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Gene Finding

BRAF BRAF p.(D594N) c.1780G>A
ERBB2 None detected
NTRK1 None detected
NTRK2 None detected
NTRK3 None detected
RET RET p.(R912W) c.2734C>T

Genomic Alteration Finding

Microsatellite Status Microsatellite stable
Tumor Mutational Burden 232.48 Mut/Mb measured

Relevant Endometrial Carcinoma Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC BRCA1 p.(R1443*) c.4327C>T

BRCA1, DNA repair associated
Allele Frequency: 4.15%
Locus: chr17:41234451
Transcript: NM_007294.4

None* abiraterone + niraparib 1, 2 / II+

bevacizumab + olaparib 1, 2 / II+

olaparib 1, 2 / II+

rucaparib 1 / II+

talazoparib + hormone therapy 1 / II+

bevacizumab + niraparib II+

niraparib II+

olaparib + hormone therapy II+

talazoparib II+

13

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC RET p.(R912W) c.2734C>T

ret proto-oncogene
Allele Frequency: 25.95%
Locus: chr10:43617397
Transcript: NM_020975.6

None* selpercatinib 1

vandetanib 2
2

  
IIC ATM p.(R2849*) c.8545C>T, ATM p.

(R457*) c.1369C>T, ATM p.(S131*)
c.392C>A

ATM serine/threonine kinase
Allele Frequency: 24.10%, 26.20%, 25.20% (3
variants)
Locus: chr11:108216596, chr11:108121561,
chr11:108106457 (3 variants)
Transcript: NM_000051.4

None* olaparib 1 / II+

talazoparib + hormone therapy 1 / II+
10

  
IIC CDK12 p.(E519*) c.1555G>T

cyclin dependent kinase 12
Allele Frequency: 25.39%
Locus: chr17:37627640
Transcript: NM_016507.4

None* olaparib 1 / II+

talazoparib + hormone therapy 1 / II+
8

  
IIC RAD54L p.(R609*) c.1825C>T

RAD54 like (S. cerevisiae)
Allele Frequency: 28.18%
Locus: chr1:46740345
Transcript: NM_001142548.1

None* olaparib 1 / II+ 5

  
IIC ATR p.(R1951*) c.5851C>T

ATR serine/threonine kinase
Allele Frequency: 23.99%
Locus: chr3:142215250
Transcript: NM_001184.4

None* talazoparib + hormone therapy 1 / II+ 4

  
IIC BRAF p.(D594N) c.1780G>A

B-Raf proto-oncogene, serine/threonine kinase
Allele Frequency: 26.88%
Locus: chr7:140453155
Transcript: NM_004333.6

None* None* 9

  
IIC POLE p.(R1320*) c.3958C>T

DNA polymerase epsilon, catalytic subunit
Allele Frequency: 10.18%
Locus: chr12:133225939
Transcript: NM_006231.4

None* None* 3

  
IIC MSH6 p.(R1076H) c.3227G>A

mutS homolog 6
Allele Frequency: 16.16%
Locus: chr2:48030613
Transcript: NM_000179.3

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC PDGFRA c.1559-1G>A

platelet derived growth factor receptor alpha
Allele Frequency: 12.25%
Locus: chr4:55140697
Transcript: NM_006206.6

None* None* 2

  
IIC PTEN p.(G44D) c.131G>A, PTEN p.

(R173H) c.518G>A
phosphatase and tensin homolog
Allele Frequency: 18.17%, 24.25% (2 variants)
Locus: chr10:89653833, chr10:89711900 (2
variants)
Transcript: NM_000314.8

None* None* 2

  
IIC RAD52 p.(S346*) c.1037C>A

RAD52 homolog, DNA repair protein
Allele Frequency: 53.33%
Locus: chr12:1023218
Transcript: NM_134424.4

None* None* 2

  
TP53 p.(G244D) c.731G>A

tumor protein p53
Allele Frequency: 24.99%
Locus: chr17:7577550
Transcript: NM_000546.6

None* None* 2IIC

Prognostic significance:  ESMO: Poor
  
IIC XRCC2 p.(R215*) c.643C>T

X-ray repair cross complementing 2
Allele Frequency: 26.90%
Locus: chr7:152345927
Transcript: NM_005431.2

None* None* 2

  
IIC FGFR2 p.(S252L) c.755C>T

fibroblast growth factor receptor 2
Allele Frequency: 24.64%
Locus: chr10:123279677
Transcript: NM_000141.5

None* None* 1

  
IIC MAP2K4 p.(R134Q) c.401G>A

mitogen-activated protein kinase kinase 4
Allele Frequency: 23.01%
Locus: chr17:11998899
Transcript: NM_003010.4

None* None* 1

  
IIC SMAD4 p.(R361H) c.1082G>A

SMAD family member 4
Allele Frequency: 18.41%
Locus: chr18:48591919
Transcript: NM_005359.6

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC SMARCA4 p.(R397*) c.1189C>T

SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily a,
member 4
Allele Frequency: 28.11%
Locus: chr19:11100063
Transcript: NM_001128849.3

None* None* 1

  
IIC TSC2 c.1946+2T>C

tuberous sclerosis 2
Allele Frequency: 25.66%
Locus: chr16:2121619
Transcript: NM_000548.5

None* None* 1

  
IIC VHL p.(*214W) c.642A>G

von Hippel-Lindau tumor suppressor
Allele Frequency: 4.55%
Locus: chr3:10191649
Transcript: NM_000551.4

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
APC p.(R1858*) c.5572C>T, APC p.(R332*) c.994C>T, EIF1AX p.(R13C) c.37C>T, EZH2 c.2029+1G>A, Microsatellite stable,
PIK3R1 p.(R348*) c.1042C>T, PPP2R1A p.(R183W) c.547C>T, TET2 p.(R1516*) c.4546C>T, ZRSR2 c.438+3A>G, CASP8 p.
(R491*) c.1471C>T, UGT1A1 p.(G71R) c.211G>A, TGFBR2 p.(R485H) c.1454G>A, RASA2 p.(R526*) c.1576C>T, TRRAP p.
(R816W) c.2446C>T, KMT2C p.(R110*) c.328C>T, CSMD3 p.(G1594*) c.4780G>T, CDH1 p.(K440N) c.1320G>T, ZFHX3 p.
(E1888*) c.5662G>T, ARHGAP35 p.(R783*) c.2347C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

RAD54L p.(R609*) c.1825C>T . chr1:46740345 28.18% NM_001142548.1 nonsense

MSH6 p.(R1076H) c.3227G>A . chr2:48030613 16.16% NM_000179.3 missense

CASP8 p.(R491*) c.1471C>T . chr2:202150030 2.35% NM_001080125.2 nonsense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 49.15% NM_000463.3 missense

VHL p.(*214W) c.642A>G . chr3:10191649 4.55% NM_000551.4 stoploss

TGFBR2 p.(R485H) c.1454G>A . chr3:30715721 23.35% NM_001024847.2 missense

RASA2 p.(R526*) c.1576C>T . chr3:141295934 14.85% NM_006506.5 nonsense

ATR p.(R1951*) c.5851C>T . chr3:142215250 23.99% NM_001184.4 nonsense

PDGFRA p.(?) c.1559-1G>A . chr4:55140697 12.25% NM_006206.6 unknown

TET2 p.(R1516*) c.4546C>T COSM43420 chr4:106196213 18.95% NM_001127208.3 nonsense

PIK3R1 p.(R348*) c.1042C>T COSM85926 chr5:67588951 24.22% NM_181523.3 nonsense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

APC p.(R332*) c.994C>T . chr5:112154723 24.90% NM_000038.6 nonsense

APC p.(R1858*) c.5572C>T . chr5:112176863 28.25% NM_000038.6 nonsense

TRRAP p.(R816W) c.2446C>T COSM248902 chr7:98515126 23.11% NM_001244580.1 missense

BRAF p.(D594N) c.1780G>A COSM27639 chr7:140453155 26.88% NM_004333.6 missense

EZH2 p.(?) c.2029+1G>A . chr7:148507424 29.95% NM_004456.5 unknown

KMT2C p.(R110*) c.328C>T . chr7:152027747 3.30% NM_170606.3 nonsense

XRCC2 p.(R215*) c.643C>T . chr7:152345927 26.90% NM_005431.2 nonsense

CSMD3 p.(G1594*) c.4780G>T . chr8:113519035 27.53% NM_198123.2 nonsense

RET p.(R912W) c.2734C>T COSM3415038 chr10:43617397 25.95% NM_020975.6 missense

PTEN p.(G44D) c.131G>A . chr10:89653833 18.17% NM_000314.8 missense

PTEN p.(R173H) c.518G>A COSM5039 chr10:89711900 24.25% NM_000314.8 missense

FGFR2 p.(S252L) c.755C>T . chr10:123279677 24.64% NM_000141.5 missense

ATM p.(S131*) c.392C>A . chr11:108106457 25.20% NM_000051.4 nonsense

ATM p.(R457*) c.1369C>T . chr11:108121561 26.20% NM_000051.4 nonsense

ATM p.(R2849*) c.8545C>T COSM922752 chr11:108216596 24.10% NM_000051.4 nonsense

RAD52 p.(S346*) c.1037C>A . chr12:1023218 53.33% NM_134424.4 nonsense

POLE p.(R1320*) c.3958C>T . chr12:133225939 10.18% NM_006231.4 nonsense

TSC2 p.(?) c.1946+2T>C . chr16:2121619 25.66% NM_000548.5 unknown

CDH1 p.(K440N) c.1320G>T . chr16:68847398 26.34% NM_004360.5 missense

ZFHX3 p.(E1888*) c.5662G>T . chr16:72830919 30.55% NM_006885.4 nonsense

TP53 p.(G244D) c.731G>A COSM10883 chr17:7577550 24.99% NM_000546.6 missense

MAP2K4 p.(R134Q) c.401G>A COSM98422 chr17:11998899 23.01% NM_003010.4 missense

CDK12 p.(E519*) c.1555G>T . chr17:37627640 25.39% NM_016507.4 nonsense

BRCA1 p.(R1443*) c.4327C>T . chr17:41234451 4.15% NM_007294.4 nonsense

SMAD4 p.(R361H) c.1082G>A COSM14122 chr18:48591919 18.41% NM_005359.6 missense

SMARCA4 p.(R397*) c.1189C>T . chr19:11100063 28.11% NM_001128849.3 nonsense

ARHGAP35 p.(R783*) c.2347C>T . chr19:47424279 30.32% NM_004491.5 nonsense

PPP2R1A p.(R183W) c.547C>T COSM51211 chr19:52715982 24.05% NM_014225.6 missense

ZRSR2 p.(?) c.438+3A>G . chrX:15826397 16.40% NM_005089.4 unknown

EIF1AX p.(R13C) c.37C>T COSM5899335 chrX:20156720 19.40% NM_001412.4 missense

MIB2 p.(G33E) c.98G>A . chr1:1551982 23.35% NM_080875.3 missense

PGD p.(S441N) c.1322G>A . chr1:10479586 13.31% NM_002631.4 missense

SPEN p.(Y559C) c.1676A>G . chr1:16247405 27.06% NM_015001.3 missense

EPHA2 p.(N744S) c.2231A>G . chr1:16458653 12.77% NM_004431.5 missense

DNA Sequence Variants (continued)

 

Variant Details (continued)

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ARID1A p.(L642I) c.1924C>A . chr1:27087350 25.41% NM_006015.6 missense

MACF1 p.(R269H) c.806G>A . chr1:39748956 15.17% NM_012090.5 missense

MAGOH p.(K61N) c.183G>T . chr1:53699289 25.00% NM_002370.4 missense

C8A p.(P454H) c.1361C>A . chr1:57373767 15.70% NM_000562.3 missense

LRRC7 p.(L296I) c.886C>A . chr1:70452024 24.75% NM_001370785.2 missense

LRRC7 p.(P1394H) c.4181C>A . chr1:70518779 14.00% NM_001370785.2 missense

CDC7 p.(S344P) c.1030T>C . chr1:91980487 28.22% NM_001134419.1 missense

DPYD p.(A784D) c.2351C>A . chr1:97700499 24.34% NM_000110.4 missense

FNDC7 p.(S219Y) c.656C>A . chr1:109265014 26.78% NM_001144937.3 missense

PTGFRN p.(S840P) c.2518T>C . chr1:117529467 4.85% NM_020440.4 missense

NOTCH2 p.(Q1732H) c.5196G>T . chr1:120464876 23.71% NM_024408.4 missense

NOTCH2 p.(N1642T) c.4925A>C . chr1:120465336 26.10% NM_024408.4 missense

SDHC p.(S19N) c.56G>A . chr1:161293439 19.91% NM_003001.5 missense

DDR2 p.(E795D) c.2385A>C . chr1:162748471 5.21% NM_006182.4 missense

ABL2 p.(T337A) c.1009A>G . chr1:179087891 5.90% NM_005158.5 missense

BRINP3 p.(A437T) c.1309G>A . chr1:190068140 4.45% NM_199051.3 missense

CDC73 p.(R513W) c.1537C>T . chr1:193218979 21.65% NM_024529.5 missense

NSL1 p.(R258I) c.773G>T . chr1:212911823 26.48% NM_015471.4 missense

PARP1 p.(P850S) c.2548C>T . chr1:226552813 13.50% NM_001618.4 missense

OR6F1 p.(T300I) c.899C>T . chr1:247875159 22.66% NM_001005286.1 missense

OR6F1 p.(C127*) c.381C>A . chr1:247875677 2.60% NM_001005286.1 nonsense

OR2L13 p.(L113I) c.337C>A . chr1:248263014 28.96% NM_175911.3 missense

WDR35 p.(Q984H) c.2952G>T . chr2:20131075 28.31% NM_001006657.2 missense

ASXL2 p.(D1338G) c.4013A>G . chr2:25965193 19.92% NM_018263.6 missense

MSH6 p.(K920N) c.2760G>T . chr2:48027882 4.15% NM_000179.3 missense

MSH6 p.(R976H) c.2927G>A . chr2:48028049 50.73% NM_000179.3 missense

NRXN1 p.(D1196N) c.3586G>A . chr2:50318593 24.01% NM_004801.5 missense

LRRTM1 p.(D317N) c.949G>A . chr2:80529996 24.05% NM_178839.5 missense

REV1 p.(G141C) c.421G>T . chr2:100058861 2.25% NM_016316.4 missense

MARCO p.(L236I) c.706C>A . chr2:119735451 4.35% NM_006770.4 missense

ACVR2A p.(D322G) c.965A>G . chr2:148677801 29.76% NM_001616.5 missense

PPIG p.(K702N) c.2106G>T . chr2:170493874 5.06% NM_004792.3 missense

CASP8 p.(G384D) c.1151G>A . chr2:202149710 24.54% NM_001080125.2 missense

BMPR2 p.(A35T) c.103G>A . chr2:203329558 3.30% NM_001204.7 missense

DNA Sequence Variants (continued)

 

Variant Details (continued)

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

BMPR2 p.(A35V) c.104C>T . chr2:203329559 19.79% NM_001204.7 missense

CUL3 p.(A493T) c.1477G>A . chr2:225367690 12.07% NM_003590.5 missense

CUL3 p.(?) c.378+1G>A . chr2:225400244 24.48% NM_003590.5 unknown

MTERF4 p.(R190C) c.568C>T . chr2:242036795 29.55% NM_182501.4 missense

CNTN6 p.(S411F) c.1232C>T . chr3:1371487 25.89% NM_014461.4 missense

FANCD2 p.(A291T) c.871G>A . chr3:10084330 3.46% NM_033084.6 missense

VHL p.(E42D) c.126G>T . chr3:10183657 20.08% NM_000551.4 missense

PP2D1 p.([Y259=;A260T]) c.777_778delCGinsTA . chr3:20042834 26.33% NM_001252657.2 synonymous,
missense

CTNNB1 p.(A360T) c.1078G>A . chr3:41268840 4.05% NM_001904.4 missense

SETD2 p.(N811H) c.2431A>C . chr3:47163695 3.65% NM_014159.7 missense

PBRM1 p.(P227H) c.680C>A . chr3:52685792 21.97% NM_018313.5 missense

PBRM1 p.(L143V) c.427T>G . chr3:52696250 2.75% NM_018313.5 missense

CASR p.(A12E) c.35C>A . chr3:121973071 25.16% NM_001178065.2 missense

KALRN p.(W299*) c.897G>A . chr3:123988036 20.87% NM_001024660.4 nonsense

RASA2 p.(Y762H) c.2284T>C . chr3:141328320 30.91% NM_006506.5 missense

PIK3CA p.(L339I) c.1015C>A . chr3:178921533 24.81% NM_006218.4 missense

TP63 p.(I482T) c.1445T>C . chr3:189604278 14.47% NM_003722.5 missense

GAK p.(D1179N) c.3535G>A . chr4:844846 24.35% NM_005255.4 missense

KIT p.(L706I) c.2116C>A . chr4:55595626 26.96% NM_000222.3 missense

KDR p.(K1110N) c.3330G>T . chr4:55955615 18.21% NM_002253.3 missense

ADGRL3 p.(G208V) c.623G>T . chr4:62598700 25.41% NM_015236.6 missense

TET2 p.(A251T) c.751G>A . chr4:106155850 2.45% NM_001127208.3 missense

ALPK1 p.(G733D) c.2198G>A . chr4:113352901 4.50% NM_001102406.2 missense

MAML3 p.(Q491Pfs*32) c.1472_1506delAGCAG
CAGCAGCAGCAGCAG
CAGCAGCAGCAGCAGi
nsCAGCAGCAGCAGC
AGCAGCAGCAA

. chr4:140811084 91.30% NM_018717.5 frameshift Block
Substitution

MAML3 p.(Q488_Q494delinsHD
S)

c.1464_1506delGCAAC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGinsCGACA
GCCAGCAGCAGCAGC
AGCAGCAGCAA

. chr4:140811084 8.70% NM_018717.5 nonframeshift
Block
Substitution

INPP4B p.(S324P) c.970T>C . chr4:143129680 26.52% NM_001101669.3 missense

FBXW7 p.(A305V) c.914C>T . chr4:153253819 23.76% NM_033632.3 missense

FBXW7 p.(S182Y) c.545C>A . chr4:153271233 35.16% NM_033632.3 missense

DNA Sequence Variants (continued)

 

Variant Details (continued)

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

FAT1 p.(R3661C) c.10981C>T . chr4:187524699 23.72% NM_005245.4 missense

FAT1 p.(K390N) c.1170G>T . chr4:187629812 27.76% NM_005245.4 missense

TERT p.(S559A) c.1675T>G . chr5:1282638 15.98% NM_198253.3 missense

MAP3K1 p.(S416P) c.1246T>C . chr5:56161749 4.95% NM_005921.2 missense

MAP3K1 p.(S422P) c.1264T>C . chr5:56161767 5.50% NM_005921.2 missense

MAP3K1 p.(E567G) c.1700A>G . chr5:56170872 3.70% NM_005921.2 missense

MAP3K1 p.(S796P) c.2386T>C . chr5:56177413 17.42% NM_005921.2 missense

PIK3R1 p.(N406S) c.1217A>G . chr5:67589229 3.60% NM_181523.3 missense

MSH3 p.(A61_P63dup) c.189_190insGCAGCG
CCC

. chr5:79950735 30.79% NM_002439.5 nonframeshift
Insertion

SSBP2 p.(P293T) c.877C>A . chr5:80736452 25.01% NM_001256732.2 missense

RASA1 p.(R245H) c.734G>A . chr5:86628365 4.85% NM_002890.3 missense

ERAP1 p.(E797D) c.2391G>T . chr5:96117453 24.33% NM_016442.4 missense

WDR36 p.(V205A) c.614T>C . chr5:110439501 22.14% NM_139281.3 missense

APC p.(P112H) c.335C>A . chr5:112103000 25.71% NM_000038.6 missense

APC p.(S996R) c.2988T>G . chr5:112174279 3.25% NM_000038.6 missense

APC p.(P2802S) c.8404C>T . chr5:112179695 22.75% NM_000038.6 missense

APC p.(S2842F) c.8525C>T . chr5:112179816 24.20% NM_000038.6 missense

RAD50 p.(N1063D) c.3187A>G . chr5:131953784 28.18% NM_005732.4 missense

FAM71B p.(T591A) c.1771A>G . chr5:156589505 26.80% NM_130899.3 missense

SFXN1 p.(A129V) c.386C>T . chr5:174937162 12.91% NM_022754.7 missense

ADAMTS2 p.(R424H) c.1271G>A . chr5:178581161 23.05% NM_014244.5 missense

DDR1 p.(R248L) c.743G>T . chr6:30859856 4.00% NM_001954.4 missense

TCTE1 p.(A9S) c.25G>T . chr6:44255538 32.75% NM_182539.4 missense

PRDM1 p.(S249N) c.746G>A . chr6:106552781 2.85% NM_001198.4 missense

FYN p.(D366G) c.1097A>G . chr6:112015844 20.75% NM_153047.4 missense

HDAC2 p.(R366C) c.1096C>T . chr6:114265570 25.61% NM_001527.4 missense

ROS1 p.(N2112K) c.6336T>A . chr6:117631342 23.37% NM_002944.3 missense

ROS1 p.(W119*) c.357G>A . chr6:117725524 25.08% NM_002944.3 nonsense

TNFAIP3 p.(A175T) c.523G>A . chr6:138196861 25.46% NM_001270507.2 missense

TNFAIP3 p.(D279Y) c.835G>T . chr6:138198242 27.01% NM_001270507.2 missense

OPRM1 p.([G39=;N40D]) c.117_118delCAinsTG . chr6:154360796 31.65% NM_001008505.2 synonymous,
missense

ARID1B p.(L1730I) c.5188C>A . chr6:157525044 27.13% NM_001371656.1 missense
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ARID1B p.(A2289V) c.6866C>T . chr6:157528892 13.84% NM_001371656.1 missense

MAP3K4 p.(K1315Q) c.3943A>C . chr6:161527632 24.81% NM_005922.4 missense

MAP3K4 p.(A1510T) c.4528G>A . chr6:161533708 13.22% NM_005922.4 missense

CARD11 p.(R576H) c.1727G>A . chr7:2968259 15.72% NM_032415.7 missense

CARD11 p.(R424W) c.1270C>T . chr7:2976742 13.81% NM_032415.7 missense

HDAC9 p.(T896I) c.2687C>T . chr7:18914103 26.61% NM_178425.3 missense

PDE1C p.(P553L) c.1658C>T . chr7:31862791 24.34% NM_001191058.4 missense

PDE1C p.(A320V) c.959C>T . chr7:31890327 17.36% NM_001191058.4 missense

GALNT17 p.(T463I) c.1388C>T . chr7:71135078 23.35% NM_022479.3 missense

ABCB1 p.(L754S) c.2261T>C . chr7:87170731 19.15% NM_000927.4 missense

LMTK2 p.(N675D) c.2023A>G . chr7:97821800 4.01% NM_014916.4 missense

POT1 p.(D563G) c.1688A>G . chr7:124465410 6.08% NM_015450.3 missense

SMO p.(W339*) c.1017G>A . chr7:128846087 25.00% NM_005631.5 nonsense

BRAF p.(P632S) c.1894C>T . chr7:140449185 24.00% NM_004333.6 missense

KMT2C p.(A4717V) c.14150C>T . chr7:151842262 25.36% NM_170606.3 missense

KMT2C p.(P4033T) c.12097C>A . chr7:151851394 24.00% NM_170606.3 missense

KMT2C p.(A3148D) c.9443C>A . chr7:151868359 13.12% NM_170606.3 missense

KMT2C p.(R1705H) c.5114G>A . chr7:151880210 24.40% NM_170606.3 missense

KMT2C p.(E1181A) c.3542A>C . chr7:151917778 24.35% NM_170606.3 missense

KMT2C p.(?) c.2977-1G>T . chr7:151921702 23.40% NM_170606.3 unknown

FGFR1 p.(D678G) c.2033A>G . chr8:38272334 3.95% NM_001174067.1 missense

CA3 p.(D41G) c.122A>G . chr8:86352028 16.21% NM_005181.4 missense

DCAF4L2 p.(R172H) c.515G>A . chr8:88885685 24.05% NM_152418.4 missense

RUNX1T1 p.(A512T) c.1534G>A . chr8:92982924 27.76% NM_001198634.2 missense

CSMD3 p.(D2726A) c.8177A>C . chr8:113317039 4.11% NM_198123.2 missense

CSMD3 p.(D779N) c.2335G>A . chr8:113697782 23.03% NM_198123.2 missense

FAM135B p.(L179*) c.536T>A . chr8:139263090 6.47% NM_015912.4 nonsense

FAM135B p.(S54N) c.161G>A . chr8:139278082 26.40% NM_015912.4 missense

ZNF623 p.([C125=;N126D]) c.375_376delCAinsTG . chr8:144732417 17.77% NM_014789.3 synonymous,
missense

JAK2 p.(E274K) c.820G>A . chr9:5054768 27.66% NM_004972.4 missense

FANCG p.(R548Q) c.1643G>A . chr9:35074485 23.54% NM_004629.2 missense

ANXA1 p.(K128T) c.383A>C . chr9:75775291 24.61% NM_000700.3 missense

FANCC p.(V508A) c.1523T>C . chr9:97869358 15.22% NM_000136.3 missense
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PTCH1 p.(A1157V) c.3470C>T . chr9:98212202 17.08% NM_000264.5 missense

PTCH1 p.(G1129D) c.3386G>A . chr9:98215823 24.51% NM_000264.5 missense

PTCH1 p.(D535G) c.1604A>G . chr9:98238440 22.00% NM_000264.5 missense

ABL1 p.(T389P) c.1165A>C . chr9:133750334 20.39% NM_005157.6 missense

GLT6D1 p.(G234D) c.701G>A . chr9:138516073 4.40% NM_182974.3 missense

LARP4B p.(A306T) c.916G>A . chr10:875534 24.23% NM_015155.3 missense

BEND7 p.(R156Q) c.467G>A . chr10:13534825 41.49% NM_152751.3 missense

GPR158 p.(C330Y) c.989G>A . chr10:25510067 4.50% NM_020752.3 missense

GPR158 p.(G497R) c.1489G>A . chr10:25839989 26.29% NM_020752.3 missense

ARMC4 p.(E206*) c.616G>T . chr10:28273179 27.22% NM_018076.5 nonsense

ARMC4 p.(E166G) c.497A>G . chr10:28274026 17.90% NM_018076.5 missense

A1CF p.(T512M) c.1535C>T . chr10:52569752 24.94% NM_138932.2 missense

A1CF p.(L478I) c.1432C>A . chr10:52570852 15.66% NM_138932.2 missense

ARID5B p.(E238K) c.712G>A . chr10:63760059 28.18% NM_032199.3 missense

ARID5B p.(D742G) c.2225A>G . chr10:63851447 27.24% NM_032199.3 missense

ARID5B p.(K1070T) c.3209A>C . chr10:63852431 25.30% NM_032199.3 missense

WAPL p.(S117I) c.350G>T . chr10:88277477 14.90% NM_015045.5 missense

FAS p.(D93N) c.277G>A . chr10:90767537 24.20% NM_000043.6 missense

FAS p.(R103K) c.308G>A . chr10:90767568 23.44% NM_000043.6 missense

CYP2C9 p.(E154D) c.462G>T . chr10:96702079 16.00% NM_000771.4 missense

TCF7L2 p.(A378T) c.1132G>A . chr10:114911614 24.71% NM_001146274.2 missense

FGFR2 p.(S788G) c.2362A>G . chr10:123239475 3.21% NM_000141.5 missense

OR5L1 p.(I49M) c.147T>G . chr11:55579089 47.84% NM_001004738.2 missense

OR5L2 p.(S233N) c.698G>A . chr11:55595392 19.28% NM_001004739.1 missense

MEN1 p.([D423=;G424D]) c.1269_1271delCGGins
TGA

. chr11:64572600 27.64% NM_000244.3 synonymous,
missense

LRP5 p.(E743K) c.2227G>A . chr11:68177517 25.51% NM_002335.4 missense

FGF3 p.(R192W) c.574C>T . chr11:69625219 15.00% NM_005247.4 missense

EMSY p.(P2S) c.4C>T . chr11:76157986 22.56% NM_020193.4 missense

ATM p.(I389M) c.1167A>G . chr11:108119761 24.01% NM_000051.4 missense

ATM p.(A1699V) c.5096C>T . chr11:108170531 22.34% NM_000051.4 missense

ATM p.(Y2437C) c.7310A>G . chr11:108200943 24.41% NM_000051.4 missense

ATM p.(P2793S) c.8377C>T . chr11:108214057 14.90% NM_000051.4 missense

ATM p.(L2952I) c.8854C>A . chr11:108235812 25.31% NM_000051.4 missense
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KMT2A p.(R427W) c.1279C>T . chr11:118343153 29.01% NM_001197104.2 missense

CHEK1 p.(S467N) c.1400G>A . chr11:125525184 20.41% NM_001274.5 missense

CAPRIN2 p.(C534R) c.1600T>C . chr12:30881764 3.55% NM_001002259.2 missense

ARID2 p.(L316I) c.946C>A . chr12:46230697 26.00% NM_152641.4 missense

ARID2 p.(A496V) c.1487C>T . chr12:46233268 4.50% NM_152641.4 missense

KMT2D p.(R2847H) c.8540G>A . chr12:49432599 4.45% NM_003482.4 missense

KMT2D p.(P1439L) c.4316C>T . chr12:49440494 24.31% NM_003482.4 missense

SP1 p.(A506V) c.1517C>T . chr12:53777248 5.46% NM_138473.3 missense

PPFIA2 p.(R951H) c.2852G>A . chr12:81688687 3.20% NM_003625.5 missense

ACACB p.(G2069D) c.6206G>A . chr12:109693984 5.30% NM_001093.4 missense

TBX3 p.(A609T) c.1825G>A . chr12:115110053 15.77% NM_016569.4 missense

TBX3 p.(A470V) c.1409C>T . chr12:115112331 2.40% NM_016569.4 missense

KSR2 p.(S399P) c.1195T>C . chr12:118020141 13.98% NM_173598.6 missense

HNF1A p.(A269V) c.806C>T . chr12:121432059 32.30% NM_000545.8 missense

POLE p.(A1528D) c.4583C>A . chr12:133219551 4.80% NM_006231.4 missense

POLE p.(E978G) c.2933A>G . chr12:133237682 27.11% NM_006231.4 missense

POLE p.(T880M) c.2639C>T . chr12:133240657 14.76% NM_006231.4 missense

LNX2 p.(A215D) c.644C>A . chr13:28143177 26.09% NM_153371.4 missense

FLT3 p.(E708*) c.2122G>T . chr13:28601310 22.87% NM_004119.3 nonsense

BRCA2 p.(T751A) c.2251A>G . chr13:32910743 23.86% NM_000059.4 missense

BRCA2 p.(R898M) c.2693G>T . chr13:32911185 23.96% NM_000059.4 missense

BRCA2 p.(G934C) c.2800G>T . chr13:32911292 27.10% NM_000059.4 missense

BRCA2 p.(E2476D) c.7428A>T . chr13:32929418 25.91% NM_000059.4 missense

FREM2 p.(E1079*) c.3235G>T . chr13:39264716 25.94% NM_207361.6 nonsense

TPP2 p.(D34A) c.101A>C . chr13:103249489 23.58% NM_003291.4 missense

CUL4A p.(A301T) c.901G>A . chr13:113891189 14.75% NM_001008895.4 missense

CUL4A p.(V352I) c.1054G>A . chr13:113897300 2.30% NM_001008895.4 missense

CDC16 p.(E97D) c.291G>T . chr13:115004875 26.68% NM_001078645.3 missense

FANCM p.(D807G) c.2420A>G . chr14:45644377 18.56% NM_020937.4 missense

SIX1 p.(T165P) c.493A>C . chr14:61115415 20.91% NM_005982.4 missense

MLH3 p.(A410T) c.1228G>A . chr14:75515131 26.91% NM_001040108.2 missense

MLH3 p.(V207I) c.619G>A . chr14:75515740 26.85% NM_001040108.2 missense

TTLL5 p.(A1251T) c.3751G>A . chr14:76368495 3.90% NM_015072.5 missense

DICER1 p.(L1748M) c.5242C>A . chr14:95560347 3.90% NM_030621.4 missense
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DICER1 p.(S3I) c.8G>T . chr14:95599788 15.05% NM_030621.4 missense

OR4M2 p.(C142Y) c.425G>A . chr15:22369000 43.45% NM_001004719.2 missense

MGA p.(I193V) c.577A>G . chr15:41961669 15.65% NM_001164273.1 missense

MGA p.(N435S) c.1304A>G . chr15:41988512 27.36% NM_001164273.1 missense

MGA p.(E563K) c.1687G>A . chr15:41988895 26.14% NM_001164273.1 missense

MGA p.(A1870D) c.5609C>A . chr15:42041414 25.06% NM_001164273.1 missense

CD276 p.(*535C) c.1605A>C . chr15:74005297 3.55% NM_001024736.2 stoploss

CHRNA3 p.(E48K) c.142G>A . chr15:78911198 26.87% NM_000743.5 missense

FANCI p.(D935E) c.2805T>G . chr15:89843532 16.47% NM_001113378.2 missense

BLM p.(S1025I) c.3074G>T . chr15:91337451 25.68% NM_000057.4 missense

CREBBP p.(A2336T) c.7006G>A . chr16:3778042 22.91% NM_004380.3 missense

CREBBP p.(R1866C) c.5596C>T . chr16:3779452 15.94% NM_004380.3 missense

CREBBP p.(R1810H) c.5429G>A . chr16:3779619 22.16% NM_004380.3 missense

CREBBP p.(K1141T) c.3422A>C . chr16:3807997 20.03% NM_004380.3 missense

CREBBP p.(S945L) c.2834C>T . chr16:3820617 23.75% NM_004380.3 missense

CREBBP p.(A487V) c.1460C>T . chr16:3832798 26.00% NM_004380.3 missense

CBFB p.(E162D) c.486G>T . chr16:67116202 25.58% NM_022845.3 missense

CTCF p.(G181E) c.542G>A . chr16:67645277 5.67% NM_006565.4 missense

CDH1 p.(P42S) c.124C>T . chr16:68772275 17.46% NM_004360.5 missense

ZFHX3 p.(A3537T) c.10609G>A . chr16:72821566 4.15% NM_006885.4 missense

ZFHX3 p.(C2713F) c.8138G>T . chr16:72828443 18.93% NM_006885.4 missense

ZFHX3 p.(A1576T) c.4726G>A . chr16:72831855 21.63% NM_006885.4 missense

ZFHX3 p.(G1080C) c.3238G>T . chr16:72923840 25.05% NM_006885.4 missense

ZFHX3 p.(N172S) c.515A>G . chr16:72993530 2.66% NM_006885.4 missense

FANCA p.(I1234S) c.3701T>G . chr16:89809272 20.50% NM_000135.4 missense

RPA1 p.(D328N) c.982G>A . chr17:1782883 21.55% NM_002945.5 missense

TP53 p.(*394W) c.1182A>G . chr17:7572927 18.80% NM_000546.6 stoploss

MAP2K4 p.(R287C) c.859C>T . chr17:12028656 23.45% NM_003010.4 missense

NCOR1 p.(E560K) c.1678G>A . chr17:16024540 23.45% NM_006311.4 missense

NF1 p.(A422T) c.1264G>A . chr17:29533261 23.30% NM_001042492.3 missense

NF1 p.(S1249F) c.3746C>T . chr17:29562666 25.89% NM_001042492.3 missense

NF1 p.(Y1948C) c.5843A>G . chr17:29661886 25.83% NM_001042492.3 missense

RAD51D p.(A132S) c.394G>T . chr17:33430281 18.84% NM_133629.3 missense

BRCA1 p.(Q1323H) c.3969A>C . chr17:41243579 4.05% NM_007294.4 missense
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BRCA1 p.(R320I) c.959G>T . chr17:41246589 25.68% NM_007294.4 missense

BRCA1 p.(S104N) c.311G>A . chr17:41256269 17.15% NM_007294.4 missense

RNF43 p.(D521G) c.1562A>G . chr17:56435575 3.25% NM_017763.6 missense

RAD51C p.(E94D) c.282G>T . chr17:56772428 15.56% NM_058216.3 missense

GNA13 p.(S124L) c.371C>T . chr17:63049759 22.55% NM_006572.6 missense

RPTOR p.(V543I) c.1627G>A . chr17:78857261 26.21% NM_020761.3 missense

DSC1 p.(A214V) c.641C>T . chr18:28728592 18.11% NM_024421.2 missense

SMAD4 p.(G393C) c.1177G>T . chr18:48593426 24.96% NM_005359.6 missense

SMAD4 p.(R502M) c.1505G>T . chr18:48604683 26.93% NM_005359.6 missense

MAP2K2 p.(R231H) c.692G>A . chr19:4101030 28.70% NM_030662.4 missense

SMARCA4 p.(R466C) c.1396C>T . chr19:11101976 25.00% NM_001128849.3 missense

NOTCH3 p.(D852E) c.2556C>A . chr19:15295116 24.52% NM_000435.3 missense

JAK3 p.(R540H) c.1619G>A . chr19:17948823 23.80% NM_000215.4 missense

KMT2B p.(P566S) c.1696C>T . chr19:36211945 32.03% NM_014727.3 missense

KMT2B p.(A1634V) c.4901C>T . chr19:36220181 19.36% NM_014727.3 missense

KMT2B p.(F2631L) c.7891T>C . chr19:36229201 16.15% NM_014727.3 missense

KMT2B p.(R2709C) c.8125C>T . chr19:36229435 26.05% NM_014727.3 missense

ERCC2 p.(K133T) c.398A>C . chr19:45868379 28.07% NM_000400.4 missense

ARHGAP35 p.(R1147C) c.3439C>T . chr19:47425371 22.51% NM_004491.5 missense

ARHGAP35 p.(P1262S) c.3784C>T . chr19:47440623 26.01% NM_004491.5 missense

BCL2L12 p.(P70S) c.208C>T . chr19:50170376 3.31% NM_138639.2 missense

ZIM3 p.(V13A) c.38T>C . chr19:57649944 5.30% NM_052882.1 missense

ZIM3 p.(R7Kfs*103) c.20_25delGAGTGAins
AAGATGG

. chr19:57649957 12.14% NM_052882.1 frameshift Block
Substitution

ASXL1 p.(R323H) c.968G>A . chr20:31019471 20.80% NM_015338.6 missense

ASXL1 p.(G1058E) c.3173G>A . chr20:31023688 26.10% NM_015338.6 missense

BPIFB4 p.([D267G;I268V]) c.800_802delACAinsG
CG

. chr20:31673844 22.01% NM_182519.2 missense,
missense

PTPRT p.(R1059W) c.3175C>T . chr20:40739109 25.32% NM_133170.4 missense

MYBL2 p.(G404D) c.1211G>A . chr20:42331389 20.50% NM_002466.4 missense

GNAS p.(R199H) c.596G>A . chr20:57484415 4.80% NM_000516.7 missense

RUNX1 p.(R232W) c.694C>T . chr21:36206818 27.01% NM_001754.5 missense

NF2 p.(A416V) c.1247C>T . chr22:30069382 24.65% NM_000268.4 missense

EP300 p.(R1478C) c.4432C>T . chr22:41566555 24.46% NM_001429.4 missense

DNA Sequence Variants (continued)

 

Variant Details (continued)

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).



Report Date: 09 Apr 2025 14 of 48

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ZRSR2 p.(T353A) c.1057A>G . chrX:15840973 2.80% NM_005089.4 missense

BCOR p.(A617V) c.1850C>T . chrX:39932749 26.25% NM_001123385.2 missense

BCOR p.(E481D) c.1443G>T . chrX:39933156 23.55% NM_001123385.2 missense

DUSP21 p.(R167C) c.499C>T . chrX:44703877 26.55% NM_022076.4 missense

KDM6A p.(R949C) c.2845C>T . chrX:44937657 26.15% NM_021140.3 missense

KDM6A p.(F1152L) c.3456C>A . chrX:44945132 26.89% NM_021140.3 missense

RBM10 p.(D365G) c.1094A>G . chrX:47038892 2.40% NM_001204468.1 missense

RBM10 p.(E494K) c.1480G>A . chrX:47040650 26.34% NM_001204468.1 missense

RBM10 p.(P497L) c.1490C>T . chrX:47040660 27.25% NM_001204468.1 missense

KDM5C p.(E466D) c.1398G>T . chrX:53240682 25.40% NM_004187.5 missense

ZMYM3 p.(R688H) c.2063G>A . chrX:70467669 4.25% NM_201599.3 missense

ZMYM3 p.(R478W) c.1432C>T . chrX:70469349 24.14% NM_201599.3 missense

ATRX p.(N2392T) c.7175A>C . chrX:76776291 31.08% NM_000489.6 missense

ATRX p.(R1803H) c.5408G>A . chrX:76874314 23.69% NM_000489.6 missense

ATRX p.(A1790V) c.5369C>T . chrX:76874353 23.46% NM_000489.6 missense

ATRX p.(G1290E) c.3869G>A . chrX:76920208 10.87% NM_000489.6 missense

STAG2 p.(K317Q) c.949A>C . chrX:123184091 2.95% NM_001042749.2 missense

STAG2 p.(Y319H) c.955T>C . chrX:123184097 30.40% NM_001042749.2 missense
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CSMD3 p.(G1594*) c.4780G>T

CUB and Sushi multiple domains 3

Background: CSMD3 encodes the CUB and Sushi multiple domains 3 protein, a member of the CSMD family, which includes
CSMD1 and CSMD21,2. Proteins containing CUB and Sushi domains are known to mediate protein-protein interactions between the
transmembrane and extracellular proteins2,3. CSMD family proteins have 14 CUB and 26–28 Sushi domains, which are reported to
regulate dendrite growth, neuronal migration, and synapse formation2,3. In cancer, mutation of CMSD3 has been associated with
greater tumor mutational burden (TMB)2,4.

Alterations and prevalence: Somatic mutations of CSMD3 are observed in 43% of lung squamous cell carcinoma, 40% of lung
adenocarcinoma, 37% of skin cutaneous melanoma, 25% of stomach adenocarcinoma, 24% of uterine corpus endometrial carcinoma,
19% of esophageal adenocarcinoma and head and neck squamous cell carcinoma, 17% of colorectal adenocarcinoma, 14% of
bladder urothelial carcinoma, 10% of diffuse large B-cell lymphoma, 8% of liver hepatocellular carcinoma and cervical squamous
cell carcinoma, 7% of ovarian serous cystadenocarcinoma, 5% of uterine carcinosarcoma, and 4% of adrenocortical carcinoma,
kidney renal clear cell carcinoma, breast invasive carcinoma, prostate adenocarcinoma and, uveal melanoma5,6. Amplification of
CSMD3 is observed in 20% of ovarian serous cystadenocarcinoma, 12% of breast invasive carcinoma, 11% of uterine carcinosarcoma,
10% of liver hepatocellular carcinoma, and esophageal adenocarcinoma, 8% of prostate adenocarcinoma, 7% of pancreatic
adenocarcinoma, 6% of uveal melanoma and head and neck squamous cell carcinoma, and 5% of bladder urothelial carcinoma and
stomach adenocarcinoma5,6. Biallelic loss of CSMD3 is observed in 2% of mesothelioma and prostate adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for CSMD3 aberrations.
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EIF1AX p.(R13C) c.37C>T

eukaryotic translation initiation factor 1A, X-linked

Background: The EIF1AX gene encodes the eukaryotic translation initiation factor 1A X-linked protein1. EIF1AX, also known as EIF1A,
stimulates protein translation initiation by promoting the recruitment of the ternary complex (TC; tRNA-eIF2-GTP) to the 40S ribosomal
subunit and facilitating the assembly of the 43S preinitiation complex (PIC)7,8.

Alterations and prevalence: Somatic mutations in EIF1AX are observed in 13% of uveal melanoma, 3% of uterine corpus endometrial
carcinoma, and 1% of thymoma and thyroid carcinoma5,6. Mutations, including X113_splice, have been observed to be recurrent
in thyroid cancers and have been proposed to cooperate with RAS mutation to drive thyroid tumorigenesis5,6,8,9,10 Amplification of
EIF1AX is observed in 2% of sarcoma, and 1% of cervical squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous
cystadenocarcinoma, and bladder urothelial carcinoma5,6.

Potential relevance: Currently, no therapies are approved for EIF1AX aberrations. EIF1AX mutations are considered a marker of low risk
of distant metastasis of uveal melanoma11.

TGFBR2 p.(R485H) c.1454G>A

transforming growth factor beta receptor 2

Background: TGFBR2 encodes transforming growth factor beta receptor 21. Along with TGFBR1 and TGFBR3, TGFBR2 is a member of
the TGF-beta receptor family12. Both TGFBR1 and TGFBR2 function as serine/threonine and tyrosine kinases, whereas TGFBR3 does
not possess any kinase activity12. TGFBR1 heterodimerizes with TGFBR2 and activates ligand binding of TGF-beta cytokines namely
TGFB1, TGFB2, and TGFB312. Heterodimerization with TGFBR2 enables TGFBR1 to phosphorylate downstream SMAD2/3, which leads
to activation of SMAD413. This process regulates various signaling pathways implicated in cancer initiation and progression, including
epithelial to mesenchymal transition (EMT) and apoptosis14,15,16.

Alterations and prevalence: Somatic mutations in TGFBR2 are observed in 5% of esophageal adenocarcinoma, and head and neck
squamous cell carcinoma, 4% of pancreatic adenocarcinoma, stomach adenocarcinoma, uterine corpus endometrial carcinoma,
colorectal adenocarcinoma, and cholangiocarcinoma5,6. Biallelic deletion of TGFRB2 is observed in 3% of kidney renal clear cell
carcinoma and 2% of stomach adenocarcinoma and head and neck squamous cell carcinoma5,6.

Potential relevance: Currently, no therapies are approved for TGFBR2 aberrations.

VHL p.(*214W) c.642A>G

von Hippel-Lindau tumor suppressor

Background: The VHL gene encodes the von Hippel-Lindau tumor suppressor protein1. VHL possesses ubiquitin ligase activity
and forms a ternary complex with transcription elongation factors C and B to make up the VCB complex, which is critical for VHL
function1,17. VHL is involved in hypoxia-inducible-factor (HIF) regulation through ubiquitination, thereby targeting HIFs, including HIF1α,
for proteasomal degradation17. Mutations in VHL lead to a destabilized VCB complex that is rapidly degraded by the proteasome,
resulting in defective HIF regulation and tumorigenesis17. Germline mutations in VHL cause the Von Hippel-Lindau hereditary cancer
syndrome, which confers predisposition to several cancer types including clear cell renal carcinoma, central nervous system, and
retinal hemangioblastomas, pheochromocytoma, and pancreatic neuroendocrine tumors17. Belzutifan is considered for the treatment
of progressive pancreatic neuroendocrine tumor harboring VHL germline aberrations18.

Alterations and prevalence: Somatic mutations in VHL are predominantly truncating followed by missense mutations and are
collectively observed in 41% of kidney renal clear cell carcinoma, and 2% of pheochromocytoma and paraganglioma, thymoma
and kidney chromophobe5,6. Biallelic deletions are observed in 3% of kidney renal clear cell carcinoma and 2% of prostate
adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for VHL aberrations.

BRCA1 p.(R1443*) c.4327C>T

BRCA1, DNA repair associated

Background: The breast cancer early onset gene 1 (BRCA1) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered
as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function
and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged
DNA19,20. Specifically, BRCA1/2 are required for the repair of chromosomal double strand breaks (DSBs) which are highly unstable
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and compromise genome integrity19,20. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for
breast and ovarian cancer and in men for breast and prostate cancer21,22,23. For individuals diagnosed with inherited pathogenic or likely
pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian
cancer by 70 years was 20-48%21,24.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian
cancer, 5-10% of breast cancer, and 1-4% of prostate cancer25,26,27,28,29,30,31,32. Somatic alterations in BRCA1 are observed in 5-10% of
uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, and cervical
squamous cell carcinoma, 3-4% of lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, ovarian serous
cystadenocarcinoma, colorectal adenocarcinoma, and breast invasive carcinoma, and 2% of head and neck squamous cell carcinoma
and glioblastoma multiforme5,6.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity
to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)33. Inhibitors targeting
PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells34,35. Consequently, several PARP inhibitors have
been FDA approved for BRCA1/2-mutated cancers. Olaparib36 (2014) was the first PARPi to be approved by the FDA for BRCA1/2
aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment
of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary
peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with
gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib36 is approved
(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic
mutations in HRR genes that includes BRCA1. Rucaparib37 is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and
ovarian cancer. Talazoparib38 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast
cancer. Additionally, talazoparib38 in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate
cancer (mCRPC) with mutations in HRR genes that includes BRCA1. Niraparib39 (2017) is another PARPi approved for the treatment of
epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib
in combination with abiraterone acetate40 received FDA approval (2023) for the treatment of deleterious or suspected deleterious
BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported41.
One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality42.
In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022,
the FDA granted fast track designation to the small molecule inhibitor, pidnarulex43, for BRCA1/2, PALB2, or other homologous
recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but
through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and
genomic instability. In 2024, the FDA granted fast track designation to TNG-34844, a USP1 inhibitor, for the treatment of BRCA1/2
mutated breast and ovarian cancer.

TET2 p.(R1516*) c.4546C>T

tet methylcytosine dioxygenase 2

Background: TET2 encodes the tet methylcytosine dioxygenase 2 protein and belongs to a family of ten-eleven translocation (TET)
proteins that also includes TET1 and TET345. TET2 is involved in DNA methylation, specifically in the conversion of 5-methylcytosine to
5-hydroxymethylcytosine46,47. The TET proteins contain a C-terminal core catalytic domain that contains a cysteine-rich domain and a
double stranded ß-helix domain (DSBH)48. TET2 is a tumor suppressor gene. Loss of function mutations in TET2 are associated with
loss of catalytic activity and transformation to hematological malignancies45,46,47

Alterations and prevalence: Somatic TET2 mutations, including nonsense, frameshift, splice site, and missense, are observed in 20-25%
of myelodysplastic syndrome (MDS) associated diseases, including 40%-60% chronic myelomonocytic leukemia (CMML)49. TET2
mutations at H1881 and R1896 are frequently observed in myeloid malignancies46,50. TET2 mutations are also observed in 9% of
uterine, 8% of melanoma and acute myeloid leukemia (AML), as well as 6% of diffuse large B-cell lymphoma (DLBCL).

Potential relevance: The presence of TET2 mutations may be used as one of the major diagnostic criteria in pre-primary myelofibrosis
(pre-PMF) and overt PMF in the absence of JAK2/CALR/MPL mutations51. TET2 mutations are associated with poor prognosis in PMF
and increased rate of transformation to leukemia51,52

EZH2 c.2029+1G>A

enhancer of zeste 2 polycomb repressive complex 2 subunit

Background: The EZH2 gene encodes the enhancer of zeste homolog 2 protein, a histone methyltransferase that functions as both a
transcriptional suppressor and co-activator53. EZH2 mediates methylation of histone H3 at Lys 27 (H3K27me3) and promotes tumor
growth and metastasis through regulation of the cell cycle53,54. Since EZH2 loss-of-function is associated with the development of
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cancer, it is considered a tumor suppressor. EZH2 is overexpressed in various cancer types, consequently, it can also function as an
oncogene53.

Alterations and prevalence: Diverse EZH2 alterations including missense, nonsense, frameshift mutations, and inactivating deletions
are observed in 18-25% of T-cell acute lymphocytic leukemia (T-ALL), 3-13% of myeloproliferative neoplasms (MPN), 8-12% of
myelodysplastic/myeloproliferative neoplasms overlap disorders (MDS/MPN), and 6% of diverse MDS54,55. Heterozygous gain-of-
function mutations at tyrosine 641 (Y641) are observed in 22% of germinal center B-cell (GBC) and diffuse large B-cell lymphoma
(DLBCL), and 7-17% of follicular lymphoma (FL)54,56. In solid tumors, EZH2 mutations are observed in up to 8% of uterine corpus
endometrial carcinoma, 5% of skin cutaneous melanoma, and 3% of cholangiocarcinoma5,6. Amplifications are observed in up to 7%
of ovarian carcinoma5,6. Increased EZH2 copy number corresponds with enhanced protein expression and is observed in over 50% of
hormone-refractory prostate cancers57.

Potential relevance: The methyltransferase inhibitor tazemetostat58 was FDA approved (2020) for EZH2 mutated relapsed or refractory
follicular lymphoma after at least 2 prior systemic therapies. Tazemetostat was also granted FDA fast track designation in 2016 for
DLBCL harboring EZH2 activating mutations59. Somatic mutation in EZH2 is one of the possible molecular abnormality requirements
for the diagnosis of myelodysplasia-related AML (AML-MR)60. EZH2 nonsense or frameshift mutations are independently associated
with poor prognosis in MDS and MDS/MPN49. EZH2 mutations also confer poor prognosis in essential thrombocythemia (ET), primary
myelofibrosis (PMF), and AML51,61,62. EZH2 overexpression correlates with malignancy, poor prognosis, and poor survival, and has
been detected in MDS and acute myeloid leukemia (AML)53,63. Several studies have shown that EZH2 overexpression enhances
chemoresistance in solid tumor types64,65.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,66. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites66,67. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance68. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation68,69,70,71. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-3872.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

RASA2 p.(R526*) c.1576C>T

RAS p21 protein activator 2

Background: The RASA2 gene encodes the RAS p21 protein activator 273. RASA2 is a member of the RasGAP family, which includes
RASA174,75. RASA2 functions as a GTPase activating protein (GAP) by enhancing RAS GTPase activity and promoting the inactive GDP-
bound form73,74. In melanoma, loss of RASA2 function was found to increase RAS activation, cell growth, and migration73.

Alterations and prevalence: Somatic mutations in RASA2 are observed in 7% of skin cutaneous melanoma and uterine corpus
endometrial carcinoma, and 3% of colorectal adenocarcinoma5,6. RASA2 and NF1 mutations strongly co-occur in melanoma73.

Potential relevance: Currently, no therapies are approved for RASA2 aberrations.

XRCC2 p.(R215*) c.643C>T

X-ray repair cross complementing 2

Background: The XRCC2 gene encodes the X-ray repair cross complementing 2 protein, also known as FANCU, a member of the RAD51
recombinase family that also includes RAD51, RAD51C, RAD51D, and XRCC3 paralogs1,76,77. XRCC2 forms the BCDX2 complex with
other RAD51 paralogs, RAD51B, RAD51C, and RAD51D76,77. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze
ATP78. XRCC2 regulates the assembly of RAD51 filaments to assist in strand-exchange activity during homologous recombination
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repair (HRR)76,77. XRCC2 germline biallelic mutations result in Fanconi Anemia (FA) complementation group U, an atypical form of FA
associated with defects in HRR79.

Alterations and prevalence: Somatic mutations in XRCC2 are observed in 3% of uterine corpus endometrial carcinoma and 2% of
diffuse large B-cell lymphoma (DLBCL), uterine carcinosarcoma, and colorectal adenocarcinoma5,6. Biallelic deletions in XRCC2 are
observed in 2% of acute myeloid leukemia (AML), sarcoma, and esophageal adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for XRCC2 aberrations. Pre-clinical evidence suggests that XRCC2 biallelic
mutations may demonstrate sensitivity to the PARP inhibitor olaparib80.

MSH6 p.(R1076H) c.3227G>A

mutS homolog 6

Background: The MSH6 gene encodes the mutS homolog 6 protein1. MSH6 is a tumor suppressor gene that heterodimerizes with
MSH2 to form the MutSα complex81. The MutSα complex functions in the DNA damage recognition of base-base mismatches or
insertion/deletion (indels) of 1-2 nucleotides81. DNA damage recognition initiates the mismatch repair (MMR) process that repairs
mismatch errors which typically occur during DNA replication. Mutations in MSH2 result in the degradation of MSH682. MSH6, along
with MLH1, MSH2, and PMS2 form the core components of the MMR pathway81. The MMR pathway is critical to the repair of mismatch
errors which typically occur during DNA replication. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression
in these genes. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite
in a tumor as compared to normal tissue83,84,85. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary
non-polyposis colorectal cancer, which is caused by germline mutations in MMR genes83,86. LS is associated with an increased risk
of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer84,86,87,88. Specifically, MSH6
mutations are associated with increased risk of ovarian and pancreatic cancer89,90,91,92.

Alterations and prevalence: Somatic mutations in MSH6 are observed in 11% of uterine corpus endometrial carcinoma, 4% colorectal
adenocarcinoma, and 3% skin cutaneous melanoma5,6.

Potential relevance: Pembrolizumab (2014) is an anti-PD-1 immune checkpoint inhibitor that is approved for patients with dMMR solid
tumors that have progressed on prior therapies93. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone
or in combination with the cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR
colorectal cancer that have progressed on prior treatment94,95.

ATM p.(R2849*) c.8545C>T, ATM p.(R457*) c.1369C>T, ATM p.(S131*) c.392C>A

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases
(PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)96. ATM and ATR act as master regulators of DNA
damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA
(ssDNA) repair97. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB97,98. Upon
activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins99. ATM is
a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by
a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss100,101. Germline mutations in ATM often result in
Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal
instability102.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of
undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma
as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer5,6.

Potential relevance: The PARP inhibitor, olaparib36 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib38 in
combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR
genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting
patients likely to respond to PARP inhibitors100,103,104. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer,
four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib105. In 2022, the FDA granted
fast track designation to the small molecule inhibitor, pidnarulex43, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.
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MAP2K4 p.(R134Q) c.401G>A

mitogen-activated protein kinase kinase 4

Background: The MAP2K4 gene encodes the mitogen-activated protein kinase kinase 4, also known as MEK4. MAP2K4 is a member
of the mitogen-activated protein kinase 2 (MAP2K) subfamily which also includes MAP2K1, MAP2K2, MAP2K3, MAP2K5, and
MAP2K6106. Activation of MAPK proteins occurs through a kinase signaling cascade106,107,108. Specifically, MAP3Ks are responsible for
phosphorylation of MAP2K family members106,107,108. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK
proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation106,107,108.
Mutations observed in MAP2K4 were have been observed to impair kinase activity and promote tumorigenesis in vitro, supporting a
possible tumor suppressor role for MAP2K4109.

Alterations and prevalence: Somatic mutations in MAP2K4 have been observed in 5% of uterine carcinoma and colorectal cancer,
and 4% of breast invasive carcinoma5,6. Biallelic deletions have been observed in 3% of stomach cancer, and 2% of breast invasive
carcinoma, diffuse large B-cell lymphoma (DLBCL), colorectal, pancreatic, and ovarian cancer5,6. Nonsense, frameshift, and missense
mutations in MAP2K4 generally inactivate the kinase activity, and lost expression has been identified in prostate, ovarian, brain, and
pancreatic cancer models110,111.

Potential relevance: Currently, no therapies are approved for MA2PK4 aberrations.

RAD54L p.(R609*) c.1825C>T

RAD54 like (S. cerevisiae)

Background: The RAD54L gene encodes the RAD54-like protein and is a member of the Snf2 family of Superfamily 2 (SF2) helicase-
like proteins, which also includes its homolog RAD54B112. The Snf2 family are a group of DNA translocases that use ATP-hydrolysis to
remodel chromatin structure and therefore regulate genome integrity by controlling transcriptional regulation, chromosome stability,
and DNA repair112,113,114. Structurally, these proteins contain a common Snf2 domain that consists of two RecA-like folds with seven
conserved sequence motifs for identifying helicases112,115. RAD54L specifically appears to stabilize the association of RAD51 DNA
strand exchange activity and binds Holliday junctions to promote branch migration during homologous recombination116. RAD54L is a
tumor suppressor gene and loss of function mutations in RAD54L are implicated in the BRCAness phenotype, which is characterized by
a defect in homologous recombination repair (HRR) mimicking BRCA1 or BRCA2 loss100.

Alterations and prevalence: Somatic mutations in RAD54L are observed in up to 5% of uterine cancer5,6.

Potential relevance: The PARP inhibitor, olaparib36 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD54L. In 2022, the FDA granted fast
track designation to the small molecule inhibitor, pidnarulex43, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.

ZFHX3 p.(E1888*) c.5662G>T

zinc finger homeobox 3

Background: ZFHX3 encodes zinc finger homeobox 3, a large transcription factor composed of several DNA binding domains, including
seventeen zinc finger domains and four homeodomains1,117,118. Functionally, ZFHX3 is found to be necessary for neuronal and
myogenic differentiation118,119. ZFHX3 is capable of binding and repressing transcription of α-fetoprotein (AFP), thereby negatively
regulating the expression of MYB and cancer cell growth120,121,122,123,124. In addition, ZFHX3 has been observed to be altered in several
cancer types, supporting a tumor suppressor role for ZFHX3120,123,125,126.

Alterations and prevalence: Somatic mutations in ZFHX3 are observed in 24% of uterine corpus endometrial carcinoma, 14% of skin
cutaneous melanoma, 10% of colorectal adenocarcinoma, 9% of stomach adenocarcinoma, 8% of lung squamous cell carcinoma, 6%
of cervical squamous cell carcinoma, 5% of uterine carcinosarcoma, bladder urothelial carcinoma, and lung adenocarcinoma, 3% of
head and neck squamous cell carcinoma, adrenocortical carcinoma, cholangiocarcinoma, esophageal adenocarcinoma, and prostate
adenocarcinoma, and 2% of diffuse large B-cell lymphoma, glioblastoma multiforme, pancreatic adenocarcinoma, liver hepatocellular
carcinoma, thyroid carcinoma, breast invasive carcinoma, ovarian serous cystadenocarcinoma, thymoma, sarcoma, and acute myeloid
leukemia5,6. Biallelic loss of ZFHX3 is observed in 6% of prostate adenocarcinoma, 4% of uterine carcinosarcoma, 3% of ovarian serous
cystadenocarcinoma, and 2% of uterine corpus endometrial carcinoma, breast invasive carcinoma, and esophageal adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for ZFHX3 aberrations.
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BRAF p.(D594N) c.1780G>A

B-Raf proto-oncogene, serine/threonine kinase

Background: The BRAF gene encodes the B-Raf proto-oncogene serine/threonine kinase, a member of the RAF family of serine/
threonine protein kinases which also includes ARAF and RAF1 (CRAF). BRAF is among the most commonly mutated kinases in cancer.
Activation of the MAPK pathway occurs through BRAF mutations and leads to an increase in cell division, dedifferentiation, and
survival127,128. BRAF mutations are categorized into three distinct functional classes namely, class 1, 2, and 3, and are defined by the
dependency on the RAS pathway. Class 1 and 2 BRAF mutants are RAS-independent in that they signal as active monomers (Class 1)
or dimers (Class 2) and become uncoupled from RAS GTPase signaling, resulting in constitutive activation of BRAF129. Class 3 mutants
are RAS dependent as the kinase domain function is impaired or dead129,130,131.

Alterations and prevalence: Recurrent somatic mutations in BRAF are observed in 40-60% of melanoma and thyroid cancer,
approximately 10% of colorectal cancer, and about 2% of non-small cell lung cancer (NSCLC)5,6,132,133,134. Mutations at V600 belong to
class 1 and include V600E, the most recurrent somatic BRAF mutation across diverse cancer types130,135. Class 2 mutations include
K601E/N/T, L597Q/V, G469A/V/R/, G464V/E/, and BRAF fusions130. Class 3 mutations include D287H, V459L, G466V/E/A, S467L,
G469E, and N581S/I130. BRAF V600E is universally present in hairy cell leukemia, mature B-cell cancer, and prevalent in histiocytic
neoplasms136,137,138. Other recurrent BRAF somatic mutations cluster in the glycine-rich phosphate-binding loop at codons 464-469
in exon 11 as well as additional codons flanking V600 in the activation loop135. In primary cancers, BRAF amplification is observed
in 8% of ovarian cancer and about 1% of breast cancer5,6. BRAF fusions are mutually exclusive to BRAF V600 mutations and have
been described in melanoma, thyroid cancer, pilocytic astrocytoma, NSCLC, and several other cancer types139,140,141,142,143. Part of the
oncogenic mechanism of BRAF gene fusions is the removal of the N-terminal auto-inhibitory domain leading to constitutive kinase
activation131,139,141.

Potential relevance: Vemurafenib144 (2011) was the first targeted therapy approved for the treatment of patients with unresectable or
metastatic melanoma with a BRAF V600E mutation. BRAF class 1 mutations, including V600E, are sensitive to vemurafenib, whereas
class 2 and 3 mutations are insensitive130. BRAF kinase inhibitors including dabrafenib145 (2013) and encorafenib146 (2018) are also
approved for the treatment of patients with unresectable or metastatic melanoma with BRAF V600E/K mutations. Encorafenib146

is approved in combination with cetuximab147 (2020) for the treatment of BRAF V600E mutated colorectal cancer. Due to the
tight coupling of RAF and MEK signaling, several MEK inhibitors have been approved for patients harboring BRAF alterations130.
Trametinib148 (2013) and binimetinib149 (2018) were approved for the treatment of metastatic melanoma with BRAF V600E/K
mutations. Combination therapies of BRAF plus MEK inhibitors have been approved in melanoma and NSCLC. The combinations of
dabrafenib/trametinib (2015) and vemurafenib/cobimetinib150 (2015) were approved for the treatment of patients with unresectable or
metastatic melanoma with a BRAF V600E/K mutation. Subsequently, the combination of dabrafenib and trametinib was approved for
metastatic NSCLC (2017) with a BRAF V600E mutation. The PD-L1 antibody, atezolizumab151, has also been approved in combination
with cobimetinib and vemurafenib for BRAF V600 mutation-positive unresectable or metastatic melanoma. The FDA has granted fast
track designation (2023) to ABM-1310152 for BRAF V600E-mutated glioblastoma (GBM) patients. In 2018, binimetinib153 was also
granted breakthrough designation in combination with cetuximab and encorafenib for BRAF V600E mutant metastatic colorectal
cancer. The ERK inhibitor ulixertinib154 was granted fast track designation in 2020 for the treatment of patients with non-colorectal
solid tumors harboring BRAF mutations G469A/V, L485W, or L597Q. The FDA granted fast track designation (2022) to the pan-RAF
inhibitor, KIN-2787155, for the treatment of BRAF class II or III alteration-positive malignant or unresectable melanoma. The FDA
also granted fast track designation (2023) to the BRAF inhibitor, plixorafenib (PLX-8394)156, for BRAF Class I (V600) and Class II
(including fusions) altered cancer patients who have already undergone previous treatments. BRAF fusion is a suggested mechanism
of resistance to BRAF targeted therapy in melanoma157. Additional mechanisms of resistance to BRAF targeted therapy include BRAF
amplification and alternative splice transcripts as well as activation of PI3K signaling and activating mutations in KRAS, NRAS, and
MAP2K1/2 (MEK1/2)158,159,160,161,162,163,164. Clinical responses to sorafenib and trametinib in limited case studies of patients with BRAF
fusions have been reported143.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome165. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue84,86. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS285. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S250166. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)166. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS87,167,168,169,170. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes86.
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LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer84,86,87,88.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma84,86,171,172. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers171,172.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab93 (2014) and nivolumab94 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab93 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication93. Dostarlimab173 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer168,174. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab95 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location168,175,176. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS)
and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients176. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors177,178. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers177,178.

APC p.(R1858*) c.5572C>T, APC p.(R332*) c.994C>T

APC, WNT signaling pathway regulator

Background: The APC gene encodes the adenomatous polyposis coli tumor suppressor protein that plays a crucial role in regulating
the β-catenin/WNT signaling pathway which is involved in cell migration, adhesion, proliferation, and differentiation179. APC is an
antagonist of WNT signaling as it targets β-catenin for proteasomal degradation180,181. Germline mutations in APC are predominantly
inactivating and result in an autosomal dominant predisposition for familial adenomatous polyposis (FAP) which is characterized by
numerous polyps in the intestine179,182. Acquiring a somatic mutation in APC is considered to be an early and possibly initiating event in
colorectal cancer183.

Alterations and prevalence: Somatic mutations in APC are observed in up to 65% of colorectal cancer, and in up to 15% of stomach
adenocarcinoma and uterine corpus endometrial carcinoma5,6,184. In colorectal cancer, ~60% of somatic APC mutations have been
reported to occur in a mutation cluster region (MCR) resulting in C-terminal protein truncation and APC inactivation185,186.

Potential relevance: Currently, no therapies are approved for APC aberrations.

PDGFRA c.1559-1G>A

platelet derived growth factor receptor alpha

Background: The PDGFRA gene encodes the platelet derived growth factor receptor alpha, a member of the PDGF receptor type III
receptor tyrosine kinase family, which includes PDGFRB, CSF1R, FLT1, FLT3, FLT4, KDR, and KIT187,188. PDGFRA is a receptor for
platelet derived growth factors, which are mitogens for cells of mesenchymal origin189. PDGFRA may function as a homodimer or
heterodimer with PDGFRB depending on the ligand190. The PDGFRA gene is physically adjacent to KIT and KDR on chromosome 4q12.
Ligand binding to PDGFRA results in kinase activation and stimulation of downstream pathways including the RAS/RAF/MEK/ERK and
PI3K/AKT/MTOR pathways promoting cell proliferation and survival.

Alterations and prevalence: Recurrent somatic PDGFRA alterations are observed in both solid and hematological cancers and
include activating mutations, gene amplification, and translocations generating PDGFRA gene fusions. Recurrent PDGFRA activating
mutations, including D842V, V561D, N659K, and in-frame deletions in exon 18, are common in 30-40% of KIT negative gastrointestinal
stromal tumors (GISTs) and approximately 7% overall191,192,193,194. PDGFRA recurrent mutations are also described in adult and
pediatric glioblastoma and high-grade gliomas194,195. In these cases, PDGFRA amplification is common (about 10% of cases) and
recurrent mutations frequently co-occur with gene amplification5,6. PDGFRA fusions are observed in gliomas and glioblastomas as
well as eosinophilic leukemias, of which the FIP1L1::PDGFRA fusion defines approximately half of patients with hypereosinophilic
syndrome196,197,198.

Potential relevance: The FDA has granted fast track designation to crenolanib199 (2017) for GISTs harboring PDGFRA D842V mutation.
Avapritinib200 is a tyrosine kinase inhibitor (TKI) that is approved (2020) by the FDA for metastatic or unresectable GIST harboring
PDGFRA exon 18 mutations including PDGFRA D842V mutation. Another TKI, imatinib201, is approved (2001) for patients diagnosed
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with chronic eosinophilic leukemia harboring FIP1L1::PDGFRA fusion. Additionally, imatinib is recommended for the treatment of GISTs
harboring PDGFRA exon 18 mutations with the exception of D842V202. The TKI, dasatinib, is recommended as a second-line therapy for
the treatment of GISTs harboring a PDGFRA exon 18 mutation that is insensitive to imatinib, including the D842V mutation202.

TRRAP p.(R816W) c.2446C>T

transformation/transcription domain associated protein

Background: TRRAP encodes transformation/transcription domain associated protein and belongs to the phosphoinositide 3 kinase-
related kinases (PIKK) family1,203,204. While TRRAP lacks the kinase activity of PIKK kinases, TRRAP functions as an adaptor protein in
several histone acetylase complexes, thereby facilitating histone acetylation, chromatin remodeling, and gene expression, including
genes involved in embryonic development203,204. Deregulation of TRRAP expression has been observed several cancer types and may
contribute to oncogenesis in gliomas, breast and ovarian cancers1,203,205,206.

Alterations and prevalence: Somatic mutations in TRRAP are observed in 19% of skin cutaneous melanoma, 16% of uterine corpus
endometrial carcinoma, 11% of stomach adenocarcinoma, 9% of bladder urothelial carcinoma and colorectal adenocarcinoma,
7% of lung adenocarcinoma esophageal adenocarcinoma and lung squamous cell carcinoma, 5% of cervical squamous cell
carcinoma, 4% of head and neck squamous cell carcinoma and uterine carcinosarcoma, 3% of cholangiocarcinoma, glioblastoma
multiforme, and sarcoma, and 2% of ovarian serous cystadenocarcinoma, kidney chromophobe, and breast invasive carcinoma5,6.
Amplification of TRRAP is observed in 11% of esophageal adenocarcinoma, 7% of stomach adenocarcinoma, 4% of lung squamous cell
carcinoma, head and neck squamous cell carcinoma, pancreatic adenocarcinoma, and diffuse large B-cell lymphoma, 3% of ovarian
serous cystadenocarcinoma and cholangiocarcinoma, and 2% of liver hepatocellular carcinoma, adrenocortical carcinoma, lung
adenocarcinoma, prostate adenocarcinoma, and uterine carcinosarcoma5,6.

Potential relevance: Currently, no therapies are approved for TRRAP aberrations.

PTEN p.(G44D) c.131G>A, PTEN p.(R173H) c.518G>A

phosphatase and tensin homolog

Background: The PTEN gene encodes the phosphatase and tensin homolog, a tumor suppressor protein with lipid and protein
phosphatase activities207. PTEN antagonizes PI3K/AKT signaling by catalyzing the dephosphorylation of phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) to PIP2 at the cell membrane, which inhibits the activation of AKT208,209. In addition, PTEN has been proposed to
influence RAD51 loading at double strand breaks during homologous recombination repair (HRR) and regulate the G2/M checkpoint by
influencing CHEK1 localization through AKT inhibition, thereby regulating HRR efficiency210. Germline mutations in PTEN are linked to
hamartoma tumor syndromes, including Cowden disease, which are defined by uncontrolled cell growth and benign or malignant tumor
formation211. PTEN germline mutations are also associated with inherited cancer risk in several cancer types212.

Alterations and prevalence: PTEN is frequently altered in cancer by inactivating loss-of-function mutations and by gene deletion. PTEN
mutations are frequently observed in 50%-60% of uterine cancer5,6. Nearly half of somatic mutations in PTEN are stop-gain or frame-
shift mutations that result in truncation of the protein reading frame. Recurrent missense or stop-gain mutations at codons R130, R173,
and R233 result in loss of phosphatase activity and inhibition of wild-type PTEN209,213,214,215,216. PTEN gene deletion is observed in 15%
of prostate cancer, 9% of squamous lung cancer, 9% of glioblastoma, and 1-5% of melanoma, sarcoma, and ovarian cancer5,6.

Potential relevance: Due to the role of PTEN in HRR, poly(ADP-ribose) polymerase inhibitors (PARPi) are being explored as a potential
therapeutic strategy in PTEN deficient tumors217,218. In 2022, the FDA granted fast track designation to the small molecule inhibitor,
pidnarulex43, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. In
2023, the FDA approved the kinase inhibitor, capivasertib219 in combination with fulvestrant for locally advanced or metastatic hormone
receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer with one or more PIK3CA/AKT1/
PTEN-alterations following progression after endocrine treatment.

RAD52 p.(S346*) c.1037C>A

RAD52 homolog, DNA repair protein

Background: The RAD52 gene encodes the RAD52 homolog, DNA repair protein1. RAD52 binds to single- and double-stranded DNA
and enables strand exchange for double-strand break (DSB) repair by binding to RAD51220. RAD52 also promotes DSB repair through
homologous recombination repair (HRR) by recruiting BRCA1 to sites of DSBs, which leads to the removal of TP53BP1 and prevents
DSB repair by non-homologous end joining (NHEJ)221.

Alterations and prevalence: Somatic mutations in RAD52 are observed in 2% of uterine corpus endometrial carcinoma, uterine
carcinosarcoma, and skin cutaneous melanoma5,6.
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Potential relevance: Currently, no therapies are approved for RAD52 aberrations.

CASP8 p.(R491*) c.1471C>T

caspase 8

Background: CASP8 encodes caspase 8, a member of the cysteine-aspartic acid protease (caspase) family consisting of inflammatory
caspases and apoptotic caspases. Apoptotic caspases consist of initiator and effector caspases1,222,223. CASP8 functions as an
initiator caspase and following external stimulation of death receptors, undergoes processing and activation leading to CASP8
mediated cleavage of downstream targets224. CASP8 propagates the extrinsic apoptotic pathway by direct cleavage of effector
caspases such as CASP3 and activates the intrinsic apoptotic pathway by cleaving BID, a pro-apoptotic proximal substrate of CASP8,
resulting in an amplification of the death-inducing signal224,225. Certain cancer types have decreased expression or inactivation of
CASP8, which results in poor prognosis and metastasis226,227.

Alterations and prevalence: Somatic mutations in CASP8 are observed in 11% head and neck squamous cell carcinoma, 10% uterine
corpus endometrial carcinoma, 5% stomach adenocarcinoma, 4% cervical squamous cell carcinoma, colorectal adenocarcinoma, and
bladder urothelial carcinoma, 3% skin cutaneous melanoma, and 2% diffuse large B-cell lymphoma, lung squamous cell carcinoma,
uterine carcinosarcoma, and breast invasive carcinoma5,6. Biallelic loss of CASP8 is observed in 2% bladder urothelial carcinoma5,6.

Potential relevance: Currently, no therapies are approved for CASP8 aberrations.

ZRSR2 c.438+3A>G

zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2

Background: The ZRSR2 gene encodes the zinc finger CCCH-type, RNA binding motif and serine/arginine-rich 2 protein, a component of
the spliceosome. Specifically, ZRSR2 encodes a splicing factor that is involved in the recognition of the 3’ intron splice site228. ZRSR2
interacts with components of the pre-spliceosome assembly including SRSF2 and U2AF2/U2AF1 heterodimer228,229. Mutations in
ZRSR2 can lead to deregulated global and alternative mRNA splicing, nuclear-cytoplasm export, and unspliced mRNA degradation
while concurrently altering the expression of multiple genes228,230.

Alterations and prevalence: ZRSR2 alterations including nonsense and frameshift mutations are observed in 5-10% of myelodysplastic
syndromes (MDS) and 4% of uterine cancer. ZRSR2 deletions are observed in 4% of diffuse large B-cell lymphoma (DLBCL), 3% of head
and neck and esophageal cancers6,49.

Potential relevance: Mutation of ZRSR2 is associated with poor prognosis in myelodysplastic syndromes as well as poor/adverse risk
in acute myeloid leukemia (AML)49,61,62.

ATR p.(R1951*) c.5851C>T

ATR serine/threonine kinase

Background: The ATR gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases
(PIKKs) family of genes that also includes ATM and PRKDC (also known as DNA-PKc)96. ATR and ATM act as master regulators of DNA
damage response. Specifically, ATR and it’s interacting protein ATRIP are involved in single-stranded DNA (ssDNA) repair while ATM
is involved in double-stranded break (DSB) repair97. ATR is characterized as a tumor suppressor that plays a key role in maintaining
genomic stability231. Upon activation, ATR phosphorylates downstream cell cycle and DNA damage signaling proteins such as CHK1,
RAD17, RAD9, and BRCA1232,233. Germline mutations in ATR confer susceptibility to various cancers234,235.

Alterations and prevalence: Somatic mutations of ATR are observed in 12% of melanoma, 11% of endometrial carcinoma, 8% of
undifferentiated stomach adenocarcinoma and bladder urothelial carcinoma cases5,6.

Potential relevance: The PARP inhibitor, talazoparib38 in combination with enzalutamide is approved (2023) for metastatic castration-
resistant prostate cancer (mCRPC) with mutations in HRR genes that includes ATR.

ARHGAP35 p.(R783*) c.2347C>T

Rho GTPase activating protein 35

Background: ARHGAP35 encodes Rho GTPase activating protein 35, human glucocorticoid receptor DNA binding factor. ARHGAP35
functions as a repressor of glucocorticoid receptor transcription1. Rho GTPases regulate various cellular processes such as cell
adhesion, cell migration and play a critical role in metastasis through the negative regulation of RhoA which is localized to the cell
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membrane236,237. Aberrations in ARHGAP35, including mutations, have been observed to result in both loss and gain of function thereby
promoting tumor growth and metastasis238,239.

Alterations and prevalence: Somatic mutations of AHGAP35 are observed in 20% of uterine corpus endometrial carcinoma, 11% of
uterine carcinosarcoma, 6% of skin cutaneous melanoma, bladder urothelial carcinoma, and lung squamous cell carcinoma, 5% of
colorectal adenocarcinoma, and 4% of stomach adenocarcinoma and lung adenocarcinoma5,6. In endometrial cancer, R997* has been
observed to be recurrent and has been observed to confer loss of RhoGAP activity due to protein truncation and loss of its RhoGAP
domain240. Amplification of AHGAP35 is observed in 4% of uterine carcinosarcoma, 2% of adrenocortical carcinoma, and diffuse large
B-cell lymphoma5,6. Biallelic loss of AHGAP35 has been observed in 2% of sarcoma5,6.

Potential relevance: Currently, no therapies are approved for ARHGAP35 aberrations.

TSC2 c.1946+2T>C

tuberous sclerosis 2

Background: The TSC2 gene encodes the tuberin protein. TSC2 and TSC1 (also known as hamartin) form a complex through their
respective coiled-coil domains241. The TSC1-TSC2 complex is a negative regulator of the mTOR signaling pathway that regulates cell
growth, cell proliferation, and protein and lipid synthesis242. Specifically, the TSC1-TSC2 complex acts as a GTPase activating (GAP)
protein that inhibits the G-protein RHEB and keeps it in an inactivated state (RHEB-GDP). GTP bound RHEB (RHEB-GTP) is required to
activate the mTOR complex 1 (mTORC1). TSC1 and TSC2 are tumor suppressor genes. Loss of function mutations in TSC1 and TSC2
lead to dysregulation of the mTOR pathway241,243. Inactivating germline mutations in TSC1 and TSC2 are associated with tuberous
sclerosis complex (TSC), an autosomal dominant neurocutaneous and progressive disorder that presents with multiple benign tumors
in different organs241.

Alterations and prevalence: Somatic mutations are observed in up to 8% of skin cutaneous melanoma, 7% of uterine corpus
endometrial carcinoma, and 4% of cervical squamous cell carcinoma5,6.

Potential relevance: Currently, no therapies are approved for TSC2 aberrations.

SMARCA4 p.(R397*) c.1189C>T

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4

Background: The SMARCA4 gene encodes the SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily
A, member 4 protein1. SMARCA4, also known as BRG1, is a core member of ATP-dependent, multisubunit SWI/SNF chromatin-
remodeling complex, along with SMARCB1/SNF5, SMARCC1/BAF155, SMARCC2/BAF170, and SMARCA2/BRM244. The SWI/
SNF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression244,245. SMARCA4
and SMARCA2 are highly homologous and are mutually exclusive ATPase catalytic subunits for SWI/SNF chromatin remodeling
complexes244,245. Germline loss of function mutations in SMARCA4 are associated with atypical teratoid/rhabdoid tumors (AT/RT),
and a rare form of ovarian cancer called small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), which highlights the tumor
suppressor function of SMARCA4.246,247.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer
and have been observed in 20% of all tumors245. Recurrent somatic mutations in SMARCA4 are observed in 10% of skin cutaneous
melanoma and uterine corpus endometrial carcinoma, and 7% of esophageal adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for SMARCA4 aberrations. SMARCA4 mutations and deletions are considered
a diagnostic marker for the SMARCA4-deficient uterine sarcoma (SDUS) subtype248.

KMT2C p.(R110*) c.328C>T

lysine methyltransferase 2C

Background: The KMT2C gene encodes the lysine methyltransferase 2C protein, a transcriptional coactivator and histone H3 lysine 4
(H3K4) methyltransferase1. KMT2C belongs to the SET domain protein methyltransferase superfamily249. KMT2C is capable of di- and
tri-methylation of histone 3 lysine 4 (H3K4) at select transcriptional enhancers depending on the cell type250. KMT2C is also found to
interact with BAP1 to control ubiquitin-mediated gene silencing of H2A by Polycomb group (PcG) complexes251,252. Specifically, KMT2C
interaction with BAP1 promotes KMT2C histone recruitment/methyltransferase activity and, along with BAP1 deubiquitination of H2A,
facilitates transcription of target genes251,252. Mutations that occur within the SET domain of KMT2C are frequently observed in cancer
and alter the methylation activity and target methylation states, thereby impacting gene regulation250.
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Alterations and prevalence: Somatic mutations in KMT2C are observed in 20% of bladder urothelial carcinoma and uterine corpus
endometrial carcinoma, 19% of skin cutaneous melanoma and cervical squamous cell carcinoma, 15% of lung squamous cell
carcinoma, 14% of stomach adenocarcinoma and lung adenocarcinoma, and 11% of cholangiocarcinoma5,6. Biallelic deletion of
KMT2C is observed in 3% of sarcoma, stomach adenocarcinoma, 2% of esophageal adenocarcinoma, acute myeloid leukemia, uterine
carcinosarcoma, and head and neck squamous cell carcinoma5,6.

Potential relevance: Currently, no therapies are approved for KMT2C aberrations.

CDK12 p.(E519*) c.1555G>T

cyclin dependent kinase 12

Background: CDK12 encodes the cyclin-dependent kinase 12 protein and is required for the maintenance of genomic stability253,254,255.
CDK12 phosphorylates RNA polymerase II and is a regulator of transcription elongation and expression of DNA repair
genes101,253,254,255,256. Alterations in CDK12 impair the transcription of homologous recombination repair (HRR) genes such as BRCA1,
ATR, FANCI, and FANCD2, contributing to a BRCAness phenotype101,255. CDK12 is a tumor suppressor gene and loss of function
mutations are observed in various solid tumors256. However, observations of CDK12 amplification and overexpression in breast cancer
indicate that it could also function as an oncogene256.

Alterations and prevalence: Somatic alterations of CDK12 include mutations and amplification. Missense and truncating mutations in
CDK12 are observed in 8% of undifferentiated stomach adenocarcinoma, 7% of bladder urothelial, and 6% endometrial carcinoma1,5.
CDK12 is amplified in 9% of esophagogastric adenocarcinoma and invasive breast carcinoma, 8% of undifferentiated stomach
adenocarcinoma, and 3% of bladder urothelial and endometrial carcinoma1,5.

Potential relevance: The PARP inhibitor, olaparib36 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CDK12. Additionally, talazoparib38

in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CDK12. Consistent with
other genes associated with homologous recombination repair, CDK12 loss may aid in selecting patients likely to respond to PARP
inhibitors101,256. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex43, for BRCA1/2, PALB2, or
other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CDH1 p.(K440N) c.1320G>T

cadherin 1

Background: The CDH1 gene encodes epithelial cadherin or E-cadherin, a member of the cadherin superfamily that includes the
classical cadherins: neural cadherin (N-cadherin), retinal cadherin (R-cadherin), and placental cadherin (P-cadherin)1,257. E-cadherin
proteins, composed of 5 extracellular cadherin repeats, a single transmembrane domain, and conserved cytoplasmic tail, are calcium-
dependent transmembrane glycoproteins expressed in epithelial cells1. Extracellular E-cadherin monomers form homodimers with
those on adjacent cells to form adherens junctions. Adherens junctions are reinforced by intracellular complexes formed between the
cytoplasmic tail of E-cadherin and catenins, proteins which directly anchor cadherins to actin filaments258. E-cadherin is a critical tumor
suppressor and when lost, results in epithelial-mesenchymal transition (EMT), anchorage-independent cell growth, loss of cell polarity,
and tumor metastasis259,260. Germline mutations in CDH1 are enriched in a rare autosomal-dominant genetic malignancies such as
hereditary diffuse gastric cancer, lobular breast cancer, and colorectal cancer261.

Alterations and prevalence: Mutations in CDH1 are predominantly missense or truncating and have been observed to result in
loss of function5,6,262,263. In cancer, somatic mutation of CDH1 is observed in 12% of invasive breast carcinoma, 10% of stomach
adenocarcinoma, 7% of uterine corpus endometrial carcinoma, 4% of colorectal adenocarcinoma and skin cutaneous melanoma, 3%
of bladder urothelial carcinomas, and 2% of lung squamous cell and liver hepatocelluar carcinomas5,6. Biallelic deletion of CDH1 is
observed in 3% of prostate adenocarcinoma and ovarian serous cystadenocarcinoma, and 2% of esophageal adenocarcinoma, diffuse
large B-cell lymphoma, and breast invasive carcinoma5,6.

Potential relevance: Currently, no therapies are approved for CDH1 aberrations.

POLE p.(R1320*) c.3958C>T

DNA polymerase epsilon, catalytic subunit

Background: The POLE gene encodes the DNA polymerase epsilon, catalytic subunit protein1. POLE is one of the four-subunits in
the DNA polymerase epsilon complex that also includes POLE2, POLE3, and POLE4264,265. The DNA polymerase epsilon complex
mediates DNA repair, chromosomal replication, and genomic stability264,265. Specifically, POLE is the largest subunit in the complex and
contains the catalytic and proofreading exonuclease active sites proposed to function in leading strand synthesis during homologous
recombination repair (HRR)265,266. Mutations in POLE lead to increased mutation rates and subsequent tumor formation thereby

Biomarker Descriptions (continued)

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).



Report Date: 09 Apr 2025 26 of 48

 
impacting genomic stability265,266. Somatic POLE mutations are characterized by a hypermutated phenotype due to the increase in
single-nucleotide substitutions267. Monoallelic POLE variants have also been associated with adenomatous polyposis and may confer
an increased risk in colorectal cancer (CRC)268,269,270,271,272. Germline mutations in POLE exonuclease domains are associated with a
predisposition to polymerase proofreading-associated polyposis267.

Alterations and prevalence: Recurrent somatic mutations occur in 15% of uterine corpus endometrial carcinoma, 9% of skin cutaneous
melanoma, 6% of colorectal adenocarcinoma, stomach adenocarcinoma, and bladder urothelial carcinoma, as well as 5% of lung
squamous cell carcinoma and lung adenocarcinoma5,6. Specifically, mutations in the proofreading domain of POLE occur in 7-12%
of endometrial cancer and 1-2% of colorectal cancer265,267. POLE mutations are associated with high tumor mutational burden
(TMB)265,267,273.

Potential relevance: Currently, no therapies are approved for POLE aberrations.

PIK3R1 p.(R348*) c.1042C>T

phosphoinositide-3-kinase regulatory subunit 1

Background: The PIK3R1 gene encodes the phosphoinositide-3-kinase regulatory subunit 1 of the class I phosphatidylinositol 3-
kinase (PI3K) enzyme1. PI3K is a heterodimer that contains a p85 regulatory subunit and a p110 catalytic subunit274. Specifically,
PIK3R1 encodes the p85α protein, one of five p85 isoforms274. p85α is responsible for the binding, stabilization, and inhibition of the
p110 catalytic subunit, thereby regulating PI3K activity274. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate
(PIP2) into phosphatidylinositol (3,4,5)-trisphosphate (PIP3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse
reaction275,276. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism275,276,277,278.
p85 is also capable of binding PTEN thereby preventing ubiquitination and increasing PTEN stability279. Loss of function mutations in
PIK3R1 results in the inability of p85 to bind p110 or PTEN resulting in aberrant activation of the PI3K/AKT/MTOR pathway, a common
driver event in several cancer types which supports a tumor suppressor role for PIK3R1274.

Alterations and prevalence: Somatic mutations in PIK3R1 are predominantly truncating or missense and are observed in about 31% of
uterine cancer, 10% of uterine carcinosarcoma and glioblastoma, 6% of colorectal cancer, and 3-4% of melanoma, low grade glioma
(LGG), stomach, and cervical cancers5. Additionally, biallelic loss of PIK3R1 is observed in 3-4% of ovarian and prostate cancers5.

Potential relevance: Currently, no therapies are approved for PIK3R1 aberrations.

SMAD4 p.(R361H) c.1082G>A

SMAD family member 4

Background: The SMAD4 gene encodes the SMAD family member 4, a transcription factor that belongs to a family of 8 SMAD genes
that can be divided into three main classes. SMAD4 (also known as DPC4) belongs to the common mediator SMAD (co-SMAD) class
while SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 are part of the regulator SMAD (R-SMAD) class. The inhibitory SMAD (I-SMAD)
class includes both SMAD6 and SMAD7280,281. SMAD4 is a tumor suppressor gene and functions as a mediator of the TGF-β and BMP
signaling pathways that are implicated in cancer initiation and progression281,282,283. Loss of SMAD4 does not drive oncogenesis, but is
associated with progression of cancers initiated by driver genes such as KRAS and APC280,281

Alterations and prevalence: Inactivation of SMAD4 can occur due to mutations, allelic loss, homozygous deletions, and 18q loss of
heterozygosity (LOH)280. Somatic mutations in SMAD4 occur in up to 20% of pancreatic, 12% of colorectal, and 8% of stomach cancers.
Recurrent hotspot mutations including R361 and P356 occur in the mad homology 2 (MH2) domain leading to the disruption of the
TGF-β signaling6,283,284. Copy number deletions occur in up to 12% of pancreatic, 10% of esophageal, and 13% of stomach cancers5,6,184.

Potential relevance: Currently, no therapies are approved for SMAD4 aberrations. Clinical studies and meta-analyses have
demonstrated that loss of SMAD4 expression confers poor prognosis and poor overall survival (OS) in colorectal and pancreatic
cancers281,283,285,286,287. Importantly, SMAD4 is a predictive biomarker to fluorouracil based chemotherapy288,289. In a retrospective
analysis of 241 colorectal cancer patients treated with fluorouracil, 21 patients with SMAD4 loss demonstrated significantly poor
median OS when compared to SMAD4 positive patients (31 months vs 89 months)289. In another clinical study of 173 newly diagnosed
and recurrent head and neck squamous cell carcinoma (HNSCC) patients, SMAD4 loss is correlated with cetuximab resistance in HPV-
negative HNSCC tumors290.

TP53 p.(G244D) c.731G>A

tumor protein p53

Background: The TP53 gene encodes the p53 tumor suppressor protein that binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair. In unstressed cells, TP53 is kept inactive by
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targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis. Alterations in TP53 is required
for oncogenesis as they result in loss of protein function and gain of transforming potential291. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers292,293.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)5,6,294,295,296,297. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common including substitutions at codons R158, R175, Y220, R248, R273, and R2825,6. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes298,299,300,301.

Potential relevance: The small molecule p53 reactivator, PC14586, received a fast track designation (2020) by the FDA for
advanced tumors harboring a TP53 Y220C mutation302. The FDA has granted fast track designation (2019) to the p53 reactivator,
eprenetapopt,303 and breakthrough designation304 (2020) in combination with azacitidine or azacitidine and venetoclax for acute
myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to
investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical
evaluation305,306. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative
neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)49,51,61,62,307,308. In mantle cell
lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell
transplant309. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing
associations with complex karyotype, few co-occuring mutations, and high-risk disease presentation as well as predicted death and
leukemic transformation independent of the IPSS-R staging system310.

FGFR2 p.(S252L) c.755C>T

fibroblast growth factor receptor 2

Background: The FGFR2 gene encodes fibroblast growth receptor 2, a member of the fibroblast growth- factor receptor (FGFR)
family that also includes FGFR1, 3, and 4. These proteins are single-transmembrane receptors composed of three extracellular
immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several
oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell
proliferation, migration, and survival311,312,313.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions. The
majority of these aberrations result in gain of function314. Missense mutations are the most prevalent alterations in FGFR2 and are
observed in up to 15% of uterine carcinomas5,6,315. These mutations are predominantly activating, most often involve substitutions at
S252 and P253, and confer sensitivity to pan-FGFR2 inhibitors315,316. FGFR2 amplification occurs in up to 4% of gastric carcinoma, and
is associated with poor prognosis as well as tumor invasion and metastasis5,317,318,319. FGFR2 fusions have also been reported in up to
14% of cholangiocarcinoma and confer sensitivity to select FGFR inhibitors5,320,321.

Potential relevance: Several pan-FGFR inhibitors have been approved for FGFR2 aberrations in cancer. Futibatinib322, is approved
(2022) for FGFR2 rearrangement or fusion-positive locally advanced or metastatic intrahepatic cholangiocarcinoma. Infigratinib,
was granted accelerated approval (2021) for previously treated, unresectable locally advanced or metastatic cholangiocarcinoma
positive for FGFR2 fusion or other rearrangement323. Erdafitinib324, received FDA approval (2019) for the treatment of locally advanced
or metastatic urothelial cancer that is positive for FGFR2 fusions including, FGFR2::BICC1 and FGFR2::CASP7, FGFR3 fusions, or
FGFR3 mutation. Pemigatinib325, received FDA approval (2020), for previously treated, advanced or unresectable cholangiocarcinoma
harboring FGFR2 fusions or other FGFR2 rearrangements. The FDA has granted Fast Track designation (2023) to the pan-FGFR
inhibitor, KIN-3248, for unresectable, locally advanced or metastatic cholangiocarcinoma with FGFR2 fusions or other alterations after
receiving at least one prior systemic therapy326. The FDA has granted Fast Track designation (2024) to the FGFR2 inhibitor, 3HP-2827,
for the treatment of patients with cholangiocarcinoma harboring FGFR2 mutations327. The FDA also granted Fast Track designation
(2018) to Debio 1347328 for solid tumors harboring FGFR1, FGFR2, or FGFR3 aberrations. The FDA has granted Breakthrough Therapy
Designation (2021) to Bemarituzumab in combination with modified FOLFOX6 (fluoropyrimidine, leucovorin, and oxaliplatin) for
treating FGFR2b-overexpressing, HER2-negative metastatic and locally advanced gastric and gastroesophageal adenocarcinoma329.
Additional FGFR inhibitors are under clinical evaluation for FGFR2 aberrations. In a phase II study of patients with FGFR2 fusion-
positive intrahepatic cholangiocarcinoma, the pan-kinase inhibitor derazantinib, demonstrated an overall response rate (ORR) of 20.7%
with progression-free survival (PFS) of 5.7 months330. Likewise, results of a phase II trial testing the pan-FGFR inhibitor, infigratinib
(BGJ398) demonstrated an ORR of 14.8% (18.8% FGFR2 fusions only), disease control rate (DCR) of 75.4% (83.3% FGFR2 fusions only),
and a median PFS of 5.8 months331.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).



Report Date: 09 Apr 2025 28 of 48

 
PPP2R1A p.(R183W) c.547C>T

protein phosphatase 2 scaffold subunit Aalpha

Background: The PPP2R1A gene encodes the protein phosphatase 2 regulatory subunit A alpha, a member of a large heterotrimeric
serine/threonine phosphatase 2A (PP2A) family1,332. Proteins of the PP2A family includes 3 subunits— the structural A subunit
(includes PPP2R1A and PPP2R1B), the regulatory B subunit (includes PPP2R2A, PPP2R5, PPP2R3, and STRN), and the catalytic
C subunit (includes PPPP2CA and PPP2CB)332,333. Specifically, the A subunit is composed of 15 tandem HEAT repeats, consisting
of approximately 40 amino acid residues organized into two anti-parallel alpha-helices which are responsible for binding both the
regulatory B and catalytic C subunits334. Recurrent mutations in PPP2R1A have been observed to promote malignant growth in uterine
cancer335.

Alterations and prevalence: Somatic mutations in PPP2R1A are predominantly missense and are observed in 28% of uterine
carcinosarcoma and 17% of uterine cancer5. Recurrent mutations are observed at codons P179, R183, and S256 within HEAT repeats
1-8 which are involved in interactions with the regulatory B subunit5,335. PPP2R1A mutations are also observed at lesser frequency
in other cancer types including 2-3% of melanoma, uveal melanoma, lung adenocarcinoma, esophageal, squamous lung, stomach,
cervical, and colorectal cancers5. PPP2R1A amplification is found to occur in about 4% of uterine cancer as well as 2% of diffuse large
B-cell lymphoma (DLBCL), low grade glioma, adrenocortical carcinoma, and bladder cancer5.

Potential relevance: The FDA has granted fast track designation (2024) to the small molecule PKMYT1 inhibitor, lunresertib336, in
combination with camonsertib for the treatment of adult patients with PPP2R1A mutated endometrial cancer and platinum resistant
ovarian cancer.

RET p.(R912W) c.2734C>T

ret proto-oncogene

Background: The RET gene encodes the RET receptor tyrosine kinase which is activated by a ligand family of glial cell line-derived
neurotrophic factors (GDNF)337. RET is the target of recurrent chromosomal rearrangements that generate fusion proteins containing
the intact RET tyrosine kinase domain combined with several fusion partner genes. RET fusion kinases are constitutively activated and
drive oncogenic transformation which can lead to activation of PI3K/AKT, RAS/RAF/MEK/ERK, and PLCγ/PKC pathways resulting in
cell survival and proliferation338.

Alterations and prevalence: RET fusions occur in approximately 55% of papillary thyroid carcinomas (PTC) with even higher
frequencies observed in PTC patients with radiation exposure339,340,341. RET rearrangement is also present in 1-2% of non-small cell
lung cancer (NSCLC)342. Point mutations in RET are relatively common in sporadic medullary thyroid cancer (MTC), with 6% of patients
found to contain germline mutations343. Somatic mutations (specifically at codon 918), which leads to increased kinase activity, have
been observed in at least 25% of MTC cases343.

Potential relevance: The FDA approved small-molecule tyrosine kinase inhibitor, cabozantinib (2012), is recommended for the
treatment of NSCLC patients with RET rearrangements344. Cabozantinib has also demonstrated clinical benefit in RET mutated
medullary thyroid cancer patients345. Selpercatinib346 is approved (2020) for RET fusion-positive NSCLC, thyroid cancer, and metastatic
solid tumors that have progressed following systemic treatment. Selpercatinib346 is also approved for RET-mutation positive medullary
thyroid cancer (MTC). Additionally, the RET inhibitor, pralsetinib347, was approved (2020) for RET fusion-positive NSCLC and thyroid
cancer as well as RET mutation-positive MTC. In 2024, the FDA granted fast track designation to the selective RET inhibitor, EP0031/
A400348, as a potential treatment option for RET-fusion positive NSCLC. Point mutations involving codons 804 and 806 have been
shown to confer resistance to selective kinase inhibitors including vandetanib349,350. RET mutations at codon 918 are associated with
high risk and adverse prognosis in patients diagnosed with MTC351.
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-01-22. For the most up-to-date information, search www.fda.gov.

 

 exarafenib

Cancer type: Melanoma Variant class: BRAF Class III

Supporting Statement:

The FDA has granted Fast Track designation to the pan-RAF inhibitor, KIN-2787, for the treatment of BRAF Class II or III alteration-
positive and/or NRAS mutation-positive stage IIb to IV malignant melanoma that is metastatic or unresectable. 

Reference:

https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food
 

BRAF p.(D594N) c.1780G>A

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed
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AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

bevacizumab + olaparib     

abiraterone + niraparib     

rucaparib     

talazoparib + enzalutamide     

niraparib      (II)

bevacizumab + niraparib     

olaparib + abiraterone acetate     

talazoparib      (II)

niraparib, dostarlimab      (II)

olaparib, talazoparib, atezolizumab + talazoparib      (II)

pamiparib, tislelizumab      (II)

ZEN-3694, talazoparib      (II)

BRCA1 p.(R1443*) c.4327C>T

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).



Report Date: 09 Apr 2025 31 of 48

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

AMXI-5001      (I/II)

sacituzumab govitecan, berzosertib      (I/II)

HS-10502      (I)

novobiocin      (I)

olaparib, chemotherapy      (I)

BRCA1 p.(R1443*) c.4327C>T (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

selpercatinib     

vandetanib     

cabozantinib, regorafenib      (II)

sunitinib, regorafenib      (II)

RET p.(R912W) c.2734C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

talazoparib + enzalutamide     

niraparib      (II)

niraparib, dostarlimab      (II)

olaparib, ipilimumab + nivolumab, atezolizumab +
talazoparib      (II)

pamiparib, tislelizumab      (II)

talazoparib      (II)

sacituzumab govitecan, berzosertib      (I/II)

HS-10502      (I)

novobiocin      (I)

olaparib, chemotherapy      (I)

ATM p.(R2849*) c.8545C>T, ATM p.(R457*) c.1369C>T, ATM p.(S131*) c.392C>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib     

talazoparib + enzalutamide     

atezolizumab + talazoparib      (II)

niraparib      (II)

niraparib, dostarlimab      (II)

pamiparib, tislelizumab      (II)

talazoparib      (II)

sacituzumab govitecan, berzosertib      (I/II)

HS-10502      (I)

novobiocin      (I)

CDK12 p.(E519*) c.1555G>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib     

niraparib      (II)

niraparib, dostarlimab      (II)

talazoparib      (II)

sacituzumab govitecan, berzosertib      (I/II)

HS-10502      (I)

RAD54L p.(R609*) c.1825C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

talazoparib + enzalutamide     

atezolizumab + talazoparib      (II)

niraparib      (II)

talazoparib      (II)

HS-10502      (I)

ATR p.(R1951*) c.5851C>T

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

avutometinib, defactinib      (II)

regorafenib      (II)

BGB-3245      (I)

ET0038      (I)

exarafenib, binimetinib      (I)

IK-595      (I)

JAB-3312      (I)

PF-07799544, PF-07799933      (I)

PF-07799933, cetuximab, binimetinib      (I)

BRAF p.(D594N) c.1780G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

pembrolizumab, ipilimumab + nivolumab      (II)

HS-10502      (I)

POLE p.(R1320*) c.3958C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

ipilimumab + nivolumab      (II)

niraparib      (II)

MSH6 p.(R1076H) c.3227G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

nilotinib, pazopanib      (II)

sunitinib      (II)

PDGFRA c.1559-1G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

PTEN p.(G44D) c.131G>A, PTEN p.(R173H) c.518G>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

HS-10502      (I)

PTEN p.(G44D) c.131G>A, PTEN p.(R173H) c.518G>A (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

HS-10502      (I)

RAD52 p.(S346*) c.1037C>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

HS-10502      (I)

TP53 p.(G244D) c.731G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

HS-10502      (I)

XRCC2 p.(R215*) c.643C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

sunitinib, futibatinib      (II)

FGFR2 p.(S252L) c.755C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

ET0038      (I)

MAP2K4 p.(R134Q) c.401G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

regorafenib      (II)

SMAD4 p.(R361H) c.1082G>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

PRT-SCA2, chemotherapy      (I)

SMARCA4 p.(R397*) c.1189C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

temsirolimus      (II)

TSC2 c.1946+2T>C

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

sunitinib      (II)

VHL p.(*214W) c.642A>G

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 0.0%
BRCA1 SNV, R320I, AF:0.26
BRCA1 SNV, S104N, AF:0.17
BRCA2 SNV, T751A, AF:0.24
BRCA2 SNV, R898M, AF:0.24
BRCA2 SNV, G934C, AF:0.27
BRCA2 SNV, E2476D, AF:0.26
ATM SNV, I389M, AF:0.24
ATM SNV, A1699V, AF:0.22
ATM SNV, Y2437C, AF:0.24
ATM SNV, P2793S, AF:0.15
ATM SNV, L2952I, AF:0.25
CHEK1 SNV, S467N, AF:0.2
RAD51C SNV, E94D, AF:0.16

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.0.2 data version 2025.02(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-01-22. NCCN information was sourced from www.nccn.org and is current
as of 2025-01-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-01-22. ESMO information was
sourced from www.esmo.org and is current as of 2025-01-02. Clinical Trials information is current as of 2025-01-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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