
삼광의료재단
서울특별시 서초구 바우뫼로41길 58 (양재동, 선화빌딩)

검사기관 11365200
Tel. 1661-5117

www.smlab.co.kr

Report Date: 02 Apr 2025 1 of 15

Patient Name: 홍길동 Primary Tumor Site: Ovary
Gender: F Collection Date: 2025-04-02
Sample ID: 20250401-40701

Sample Cancer Type: Ovarian Cancer

Table of Contents Page
Variant Details 2
Biomarker Descriptions 3
Alert Details 7
Relevant Therapy Summary 8

Report Highlights
4 Relevant Biomarkers
4 Therapies Available
24 Clinical Trials

 
Gene Finding Gene Finding

BRAF None detected NTRK1 None detected
BRCA1 None detected NTRK2 None detected
BRCA2 None detected NTRK3 None detected
ERBB2 None detected RET RET amplification

Genomic Alteration Finding

Tumor Mutational Burden 3.79 Mut/Mb measured
Genomic Instability GIM 26 (High)

HRD Status: HR Deficient (HRD+)

Relevant Ovarian Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA Genomic Instability

GIM 26 (High)

bevacizumab + olaparib 1, 2 / II+

bevacizumab II+

bevacizumab + niraparib II+

niraparib II+

None* 20

  
IIC TP53 p.(R213*) c.637C>T

tumor protein p53
Allele Frequency: 66.30%
Locus: chr17:7578212
Transcript: NM_000546.6

None* None* 6

  
IIC FGFR1 amplification

fibroblast growth factor receptor 1
Locus: chr8:38271452

None* None* 5

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC RET amplification

ret proto-oncogene
Locus: chr10:43609070

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

Genomic Instability  pidnarulex 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
MDM2 amplification, Microsatellite stable, IKBKB amplification, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

NQO1 p.(P187S) c.559C>T . chr16:69745145 50.90% NM_000903.3 missense

TP53 p.(R213*) c.637C>T COSM10654 chr17:7578212 66.30% NM_000546.6 nonsense

PP2D1 p.(M240*) c.718delA . chr3:20042893 43.26% NM_001252657.2 nonsense

HLA-B p.(Y140L) c.419_420delACinsTA . chr6:31324143 27.78% NM_005514.8 missense

HLA-B p.(C125S) c.373T>A . chr6:31324190 62.50% NM_005514.8 missense

FGFR2 p.(Y657*) c.1971C>A . chr10:123247520 2.78% NM_000141.5 nonsense

BRCA2 p.(E2918A) c.8753A>C . chr13:32950927 66.84% NM_000059.4 missense

MGA p.(V3042M) c.9124G>A . chr15:42059404 56.10% NM_001164273.1 missense

ZFHX3 p.(Q1503H) c.4509G>C . chr16:72832072 19.40% NM_006885.4 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

FGFR1 chr8:38271452 9.69 3.57

IKBKB chr8:42129602 5.67 2.23

RET chr10:43609070 7.19 2.74

MDM2 chr12:69202958 8.79 3.28

BARD1 chr2:215593375 8 2.86

WT1 chr11:32410528 4.81 1.94

SMARCB1 chr22:24129273 5.54 2.19

Copy Number Variations

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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IKBKB amplification

inhibitor of nuclear factor kappa B kinase subunit beta

Background: The IKBKB gene encodes the nuclear factor kappa B kinase subunit beta, also known as IKK-B. IKBKB is a serine/
threonine kinase, which acts as an enzyme protein subunit of the IKK complex1. IKBKB and IKBKA dimerize to form the regulatory
subunit of the IKK complex. Along with modulator IKKγ/NEMO, the IKK complex acts as a master regulator of the family of NF-κB
transcription factors.1. NF-κB signaling is critical in the inflammatory response and is also known to be implicated in other important
physiological processes including cell proliferation2. In resting cells, NF-κB dimers are sequestered in the cytoplasm by IκB proteins2.
Upon signal initiation, IκB proteins are phosphorylated by the IKK complex, leading to IκB protein degradation and liberation of NF-κB
dimers2. Subsequently, released NF-κB dimers undergo nuclear translocation which leads to the expression of various proinflammatory
and cell survival genes3,4.

Alterations and prevalence: Somatic mutations in IKBKB are observed in 6% of uterine carcinoma, 5% of melanoma and diffuse large
B-cell lymphoma (DLBCL)5,6. Amplifications are observed in 14% of uterine carcinosarcoma, 7% of breast invasive carcinoma and
esophageal cancer5,6. IKBKB activating mutations are most commonly found at lysine 175 and are observed in 8% of splenic marginal
B-cell lymphomas1.

Potential relevance: Currently, no therapies are approved for IKBKB aberrations.

FGFR1 amplification

fibroblast growth factor receptor 1

Background: The FGFR1 gene encodes fibroblast growth receptor 1, a member of the fibroblast growth factor receptor (FGFR)
family that also includes FGFR2, 3, and 4. These proteins are single transmembrane receptors composed of three extracellular
immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several
oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell
proliferation, migration, and survival7,8,9.

Alterations and prevalence: Recurrent somatic alterations common to the FGFR family include gene amplification, mutation, and
chromosomal translocations leading to FGFR fusions10. Amplification of FGFR1 is observed in 15-20% of squamous lung cancer,
10-15% of breast cancer, 8% of bladder cancer, and 2-5% of uterine cancer cases5,6,11,12,13. The most common recurrent mutations,
N546K and K656E, are relatively infrequent (<1%); they activate mutations in the kinase domain and are distributed in diverse cancer
types14. FGFR1 translocations giving rise to expressed fusions are common in certain hematological cancers, but less common in solid
tumors15,16,17.

Potential relevance: The FGFR kinase inhibitor, pemigatinib18 has been approved (2022) for the treatment of adults with relapsed/
refractory myeloid/lymphoid neoplasms (MLNs) with FGFR1 rearrangement. Additionally, the FDA granted fast-track designation
(2018) to Debio 134719 for solid tumors harboring aberrations in FGFR1, FGFR2, or FGFR3. FDA has approved multi-kinase inhibitors,
including regorafenib, ponatinib, lenvatinib, nintedanib, and pazopanib, that are known to inhibit FGFR family members. These inhibitors
have demonstrated anti-tumor activity in select cancer types with FGFR alterations20,21,22,23,24,25,26. In a phase II clinical trial, dovitinib,
a multi-tyrosine kinase inhibitor (TKI), exhibited an overall response rate (ORR) of 11.5% and a disease control rate (DCR) of 50% in
patients with advanced squamous cell lung cancer possessing FGFR1 amplification. The patients had a median overall survival (OS)
of 5 months and progression-free survival (PFS) of 2.9 months27. Likewise, in a phase Ib study testing the FGFR inhibitor AZD4547, the
median OS was 4.9 months in patients with FGFR1-amplified advanced squamous cell lung cancer. One of 13 (8%) patients achieved a
partial response, 4 (31%) exhibited stable disease, and 2 (13.3%) demonstrated PFS at 12 weeks28.

TP53 p.(R213*) c.637C>T

tumor protein p53

Background: The TP53 gene encodes the p53 tumor suppressor protein that binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis. Alterations in TP53 is required
for oncogenesis as they result in loss of protein function and gain of transforming potential29. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers30,31.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)5,6,11,32,33,34. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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mutations are common including substitutions at codons R158, R175, Y220, R248, R273, and R2825,6. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes35,36,37,38.

Potential relevance: The small molecule p53 reactivator, PC14586, received a fast track designation (2020) by the FDA for advanced
tumors harboring a TP53 Y220C mutation39. The FDA has granted fast track designation (2019) to the p53 reactivator, eprenetapopt,40

and breakthrough designation41 (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia
patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies
aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation42,43. TP53
mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN),
and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)44,45,46,47,48,49. In mantle cell lymphoma, TP53
mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant50.
Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations
with complex karyotype, few co-occuring mutations, and high-risk disease presentation as well as predicted death and leukemic
transformation independent of the IPSS-R staging system51.

MDM2 amplification

MDM2 proto-oncogene

Background: The MDM2 gene encodes the murine double minute 2 proto-oncogene. MDM2 is structurally related to murine double
minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING
domain52. MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or
heterodimerize with p53 through their RING domains52. Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is
responsible for the polyubiquitination and degradation of the p53 protein when MDM2 is present at high levels53. Alternately, low levels
of MDM2 activity promote mono-ubiquitination and nuclear export of p5353. MDM2 amplification and overexpression disrupt the p53
protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM253.

Alterations and prevalence: MDM2 is amplified in up to 13% of sarcoma, 8% of bladder urothelial carcinoma, glioblastoma, and 7% of
adrenal cortical carcinoma5,6. MDM2 overexpression is observed in lung, breast, liver, esophagogastric, and colorectal cancers54. The
most common co-occuring aberrations with MDM2 amplification or overexpression are CDK4 amplification and TP53 mutation55,56.

Potential relevance: Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes
MDM2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and
dedifferentiated liposarcoma57.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome58. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue59,60. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS261. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25062. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)62. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS63,64,65,66,67. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes60.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer59,60,64,68.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma59,60,69,70. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers69,70.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab71 (2014) and nivolumab72 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab71 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication71. Dostarlimab73 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer65,74. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,

Biomarker Descriptions (continued)
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ipilimumab75 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location65,76,77. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients77. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors78,79. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers78,79.

Genomic Instability

Background: Homologous recombination repair (HRR) is a DNA repair mechanism that targets double stranded breaks (DSBs)
and interstrand cross-links (ICL) in DNA80. Homologous recombination deficiency (HRD) is characterized by the cell’s inability to
repair these DSBs80,81. HRD is caused by genetic or epigenetic alterations in the HRR pathway genes, most notably BRCA1 and
BRCA2 along with other genes such as ATM and PALB282,83,84,85. A consequence of HRD due to the failure to repair DSBs is genomic
instability86,87. Genomic instability is an increased tendency towards acquiring genomic alterations during cell division88,89,90,91,92,93.
These alterations include small structural variations (i.e., single nucleotide variants (SNVs), insertions, and deletions) as well as
significant structural variations (i.e., loss or gain of large chromosome fragments)89,94,95. Variations of genomic instability include
chromosomal instability, intrachromosomal instability, microsatellite instability, and epigenetic instability88. Importantly, while the
impact of frame-shift mutations in specific HRR genes can be mitigated by secondary mutations that restore the correct reading frame
and thereby alleviate HRD, the effects of genomic instability are permanent and not reversible96,97,98. For this reason, the alterations
characteristic of genomic instability are referred to as genomic scars99,100. Some of the genomic scar signatures that are characteristic
of the HRD phenotype include loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transition (LST)80,101.
Current methods for HRD detection are heterogeneous and the definition for HRD positive tumors varies depending on the cancer
type80. Generally, these methods detect the causes of HRD (i.e., alterations in HRR genes) and/or the consequences (i.e., signatures of
genomic instability/genomic scarring)80,86,102,103.

Alterations and prevalence: In a pan-cancer analysis of HRR gene mutations and genomic scar signatures in 8847 tumors across
33 cancer types, 17.5% of tumors were HRD-positive and 4% of tumors were positive for the BRCA1/2 mutation104. Specifically,
HRD-positive status was observed in over 50% of ovarian serous cystadenocarcinoma and lung squamous cell carcinoma, 35-45%
of esophageal carcinoma, uterine carcinosarcoma, sarcoma, and lung adenocarcinoma, 20-30% of stomach adenocarcinoma,
bladder urothelial carcinoma, breast invasive carcinoma, and head and neck squamous cell carcinoma, 5-15% of endometrial
cancer, mesothelioma, cervical cancer, pancreatic adenocarcinoma, cutaneous melanoma, hepatocellular carcinoma, diffuse
large B-cell lymphoma, and adrenocortical carcinoma, and 1-4% of rectum adenocarcinoma, prostate adenocarcinoma, colon
adenocarcinoma, testicular germ cell tumors, kidney chromophobe, glioblastoma multiforme, low grade glioma, and renal clear cell
carcinoma104. Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer, 5-10%
of breast cancer, and 1-4% of prostate cancer105,106,107,108,109,110,111,112. Somatic alterations in BRCA1 are observed in 5-10% of uterine
corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, and cervical
squamous cell carcinoma, 3-4% of lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, ovarian serous
cystadenocarcinoma, colorectal adenocarcinoma, and breast invasive carcinoma, and 2% of head and neck squamous cell carcinoma
and glioblastoma multiforme5,6. Somatic alterations in BRCA2 are observed in 5-15% of uterine corpus endometrial carcinoma,
cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal adenocarcinoma, lung squamous cell
carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous cell carcinoma, head and neck squamous
cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, cholangiocarcinoma, breast invasive carcinoma,
renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular carcinoma, thymoma, prostate adenocarcinoma,
sarcoma, and glioblastoma multiforme5,6.

Potential relevance: HRD status is an important biomarker in advanced ovarian and prostate cancer because it predicts response
to certain treatments including poly-ADP ribose polymerase (PARP) inhibitors and platinum chemotherapies113,114,115. Disruption of
HRR or inhibition of PARP, are tolerated by cells through the utilization of complementary DNA repair pathways. However, presence
of HRD and subsequent treatment with PARP inhibitors block DNA repair, causing accumulation of DNA damage and cell death
through synthetic lethality80,116,117,118. Several PARP inhibitors are approved by the FDA for various cancers associated with markers
of HRD. Olaparib119 was the first PARP inhibitor originally approved in 2014 for ovarian cancer with germline mutations in BRCA1/2
(gBRCAm). The utility of olaparib has since expanded to include genomic instability markers and mutations in other HRR genes.
Specifically, olaparib as monotherapy is now indicated for gBRCAm and somatic BRCA1/2 mutated (sBRCAm) ovarian cancer and in
combination with bevacizumab for BRCA1/2 mutated or genomic instability positive ovarian cancer119. In addition, olaparib is approved
in prostate cancer with germline or somatic mutations in HRR genes including ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL,
PALB2, RAD51B, RAD51C, RAD51D, and RAD54L83,119,120. Olaparib is also approved for gBRCAm HER2 negative breast cancer and as
maintenance therapies for gBRCAm pancreatic cancers119. Other PARP inhibitors that are FDA approved for BRCA mutated cancers
include rucaparib121 (2016) that is indicated for gBRCAm or sBRCAm ovarian and prostate cancers, niraparib122 (2017) that is indicated
for gBRCAm ovarian cancer, and talazoparib123 (2018) that is indicated for gBRCAm HER2-negative metastatic breast cancer. Niraparib
is also recommended for the treatment of HRD-positive ovarian cancer, defined by BRCA1/2 mutations and/or genomic instability124.
In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA1/2 mutations. In 2022,

Biomarker Descriptions (continued)
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the FDA granted fast track designation to the small molecule inhibitor, pidnarulex125, for BRCA1/2, PALB2, or other HRR gene mutations
in breast and ovarian cancers. Like PARP inhibitors, pidnarulex125 causes synthetic lethality but through an alternative mechanism
which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and genomic instability. Despite tolerability
and efficacy, acquired resistance to PARP inhibitors such as olaparib has been clinically reported126. One of the most common
mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality127. Other potential mechanisms
of resistance to PARP inhibitors include restoration of HRR activity, stabilization of the replication forks, inhibition of PARP trapping,
increased drug efflux mediated by P-glycoprotein, and cell cycle control alterations127,128,129,130.

RET amplification

ret proto-oncogene

Background: The RET gene encodes the RET receptor tyrosine kinase which is activated by a ligand family of glial cell line-derived
neurotrophic factors (GDNF)131. RET is the target of recurrent chromosomal rearrangements that generate fusion proteins containing
the intact RET tyrosine kinase domain combined with several fusion partner genes. RET fusion kinases are constitutively activated and
drive oncogenic transformation which can lead to activation of PI3K/AKT, RAS/RAF/MEK/ERK, and PLCγ/PKC pathways resulting in
cell survival and proliferation132.

Alterations and prevalence: RET fusions occur in approximately 55% of papillary thyroid carcinomas (PTC) with even higher
frequencies observed in PTC patients with radiation exposure133,134,135. RET rearrangement is also present in 1-2% of non-small cell
lung cancer (NSCLC)136. Point mutations in RET are relatively common in sporadic medullary thyroid cancer (MTC), with 6% of patients
found to contain germline mutations137. Somatic mutations (specifically at codon 918), which leads to increased kinase activity, have
been observed in at least 25% of MTC cases137.

Potential relevance: The FDA approved small-molecule tyrosine kinase inhibitor, cabozantinib (2012), is recommended for the
treatment of NSCLC patients with RET rearrangements138. Cabozantinib has also demonstrated clinical benefit in RET mutated
medullary thyroid cancer patients139. Selpercatinib140 is approved (2020) for RET fusion-positive NSCLC, thyroid cancer, and metastatic
solid tumors that have progressed following systemic treatment. Selpercatinib140 is also approved for RET-mutation positive medullary
thyroid cancer (MTC). Additionally, the RET inhibitor, pralsetinib141, was approved (2020) for RET fusion-positive NSCLC and thyroid
cancer as well as RET mutation-positive MTC. In 2024, the FDA granted fast track designation to the selective RET inhibitor, EP0031/
A400142, as a potential treatment option for RET-fusion positive NSCLC. Point mutations involving codons 804 and 806 have been
shown to confer resistance to selective kinase inhibitors including vandetanib143,144. RET mutations at codon 918 are associated with
high risk and adverse prognosis in patients diagnosed with MTC145.
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-01-22. For the most up-to-date information, search www.fda.gov.

 

 pidnarulex

Cancer type: Breast Cancer, Ovarian Cancer Variant class: HR Deficient

Supporting Statement:
The FDA has granted Fast Track designation to the small molecule inhibitor, pidnarulex, for BRCA1/2, PALB2, or other HRD
mutations in breast and ovarian cancers.

Reference:

https://www.senhwabio.com//en/news/20220125
 

Genomic Instability

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

bevacizumab + olaparib     

niraparib      (II)

bevacizumab     

bevacizumab + niraparib     

olaparib      (IV)

olaparib, bevacizumab      (IV)

atezolizumab + talazoparib      (II)

fluzoparib      (II)

niraparib, chemotherapy      (II)

tuvusertib, lartesertib, niraparib      (II)

AMXI-5001      (I/II)

niraparib, GSK-101      (I/II)

sacituzumab govitecan, berzosertib      (I/II)

Genomic Instability

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

VIO-01      (I/II)

CART-TAG72      (I)

ceralasertib, olaparib, saruparib      (I)

HS-10502      (I)

MOMA-313, olaparib      (I)

pidnarulex      (I)

SIM-0501      (I)

XL-309, olaparib      (I)

Genomic Instability (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

niraparib      (II)

niraparib, GSK-101      (I/II)

VIO-01      (I/II)

HS-10502      (I)

SIM-0501      (I)

XL-309, olaparib      (I)

TP53 p.(R213*) c.637C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pemigatinib      (II)

regorafenib      (II)

sunitinib      (II)

BBI-355, futibatinib      (I/II)

ABSK-121      (I)

FGFR1 amplification

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

cabozantinib, regorafenib      (II)

RET amplification

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

sunitinib, regorafenib      (II)

RET amplification (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 31.14%
BRCA1 LOH, 17q21.31(41197602-41276231)x3
BRCA2 LOH, 13q13.1(32890491-32972932)x3
BRCA2 SNV, E2918A, AF:0.67
BRIP1 LOH, 17q23.2(59760627-59938976)x3
CDK12 LOH, 17q12(37618286-37687611)x3
RAD51C LOH, 17q22(56769933-56811619)x3
RAD51D LOH, 17q12(33427950-33446720)x3

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.0.2 data version 2025.02(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-01-22. NCCN information was sourced from www.nccn.org and is current
as of 2025-01-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-01-22. ESMO information was
sourced from www.esmo.org and is current as of 2025-01-02. Clinical Trials information is current as of 2025-01-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.02(006).
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